Normalized defining polynomial
\( x^{16} - 8 x^{15} + 36 x^{14} - 82 x^{13} - 47 x^{12} + 1140 x^{11} - 5559 x^{10} + 17048 x^{9} - 41895 x^{8} + 81372 x^{7} - 120353 x^{6} + 122178 x^{5} - 44765 x^{4} - 160 x^{3} + 81666 x^{2} + 22288 x - 4684 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[4, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(42345450969766297600000000=2^{24}\cdot 5^{8}\cdot 13^{8}\cdot 89^{2}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $39.96$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 13, 89$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{10} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{12} - \frac{1}{2} a^{10} - \frac{1}{2} a^{6} - \frac{1}{2} a^{2}$, $\frac{1}{22} a^{13} - \frac{3}{22} a^{12} - \frac{1}{11} a^{11} + \frac{1}{11} a^{10} + \frac{5}{11} a^{8} - \frac{3}{22} a^{7} - \frac{5}{22} a^{6} + \frac{1}{22} a^{5} - \frac{5}{22} a^{4} - \frac{5}{11} a^{3} - \frac{4}{11} a^{2} + \frac{2}{11} a - \frac{4}{11}$, $\frac{1}{484} a^{14} + \frac{5}{242} a^{13} - \frac{107}{484} a^{12} + \frac{43}{242} a^{11} + \frac{1}{121} a^{10} + \frac{27}{242} a^{9} + \frac{171}{484} a^{8} - \frac{5}{11} a^{7} + \frac{17}{121} a^{6} + \frac{57}{121} a^{5} - \frac{31}{484} a^{4} + \frac{15}{121} a^{3} + \frac{52}{121} a^{2} + \frac{4}{11} a - \frac{4}{121}$, $\frac{1}{422555832295220613479308279605569128} a^{15} + \frac{362290994855746329803166671566721}{422555832295220613479308279605569128} a^{14} + \frac{2861108286069146575482424398045965}{422555832295220613479308279605569128} a^{13} + \frac{28757269505115114118949779374952831}{422555832295220613479308279605569128} a^{12} - \frac{31844525048909974149982361281658}{208772644414634690454203695457297} a^{11} + \frac{694872960028252147930868832772168}{52819479036902576684913534950696141} a^{10} + \frac{29066403705979578669619204909543625}{422555832295220613479308279605569128} a^{9} - \frac{98284716267655313623188832889947191}{422555832295220613479308279605569128} a^{8} + \frac{81139335243666209820542884391157969}{211277916147610306739654139802784564} a^{7} + \frac{19963975451859282918577641003072697}{211277916147610306739654139802784564} a^{6} - \frac{27339194996995854513649852407374231}{422555832295220613479308279605569128} a^{5} + \frac{87820962431306920056678666713778083}{422555832295220613479308279605569128} a^{4} + \frac{61214891529686796244272438129320787}{211277916147610306739654139802784564} a^{3} + \frac{38202555716444343883723547459016017}{211277916147610306739654139802784564} a^{2} + \frac{44092581244287507272766354698468641}{105638958073805153369827069901392282} a - \frac{12050956192772715281900004917627359}{105638958073805153369827069901392282}$
Class group and class number
$C_{2}$, which has order $2$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 1760126.87636 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 1024 |
| The 55 conjugacy class representatives for t16n1123 are not computed |
| Character table for t16n1123 is not computed |
Intermediate fields
| \(\Q(\sqrt{13}) \), \(\Q(\sqrt{5}) \), \(\Q(\sqrt{65}) \), \(\Q(\sqrt{5}, \sqrt{13})\), 8.8.1142440000.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ | R | ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/17.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{5}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.4.6.3 | $x^{4} + 2 x^{2} + 20$ | $2$ | $2$ | $6$ | $C_4$ | $[3]^{2}$ |
| 2.4.6.3 | $x^{4} + 2 x^{2} + 20$ | $2$ | $2$ | $6$ | $C_4$ | $[3]^{2}$ | |
| 2.8.12.1 | $x^{8} + 6 x^{6} + 8 x^{5} + 16$ | $2$ | $4$ | $12$ | $C_4\times C_2$ | $[3]^{4}$ | |
| $5$ | 5.8.4.1 | $x^{8} + 10 x^{6} + 125 x^{4} + 2500$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ |
| 5.8.4.1 | $x^{8} + 10 x^{6} + 125 x^{4} + 2500$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| 13 | Data not computed | ||||||
| $89$ | 89.2.0.1 | $x^{2} - x + 6$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 89.2.0.1 | $x^{2} - x + 6$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 89.4.2.1 | $x^{4} + 979 x^{2} + 285156$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 89.4.0.1 | $x^{4} - x + 27$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 89.4.0.1 | $x^{4} - x + 27$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |