Normalized defining polynomial
\( x^{16} - 8 x^{15} + 32 x^{14} - 84 x^{13} + 130 x^{12} - 52 x^{11} - 32 x^{10} - 412 x^{9} + 677 x^{8} + 908 x^{7} - 7256 x^{6} + 15648 x^{5} - 14480 x^{4} + 5376 x^{3} + 21952 x^{2} - 22400 x + 5888 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[4, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(42287613544824591671753041=37^{4}\cdot 41^{12}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $39.96$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $37, 41$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $\frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{2} a^{3} - \frac{1}{2} a$, $\frac{1}{4} a^{4} - \frac{1}{4} a^{2}$, $\frac{1}{4} a^{5} - \frac{1}{4} a^{3}$, $\frac{1}{8} a^{6} - \frac{1}{8} a^{5} - \frac{1}{8} a^{4} + \frac{1}{8} a^{3}$, $\frac{1}{8} a^{7} - \frac{1}{8} a^{3}$, $\frac{1}{16} a^{8} - \frac{1}{8} a^{5} - \frac{1}{16} a^{4} + \frac{1}{8} a^{3}$, $\frac{1}{16} a^{9} + \frac{1}{16} a^{5} - \frac{1}{8} a^{3}$, $\frac{1}{32} a^{10} - \frac{1}{32} a^{9} - \frac{1}{16} a^{7} + \frac{1}{32} a^{6} + \frac{3}{32} a^{5} - \frac{1}{16} a^{4}$, $\frac{1}{32} a^{11} - \frac{1}{32} a^{9} - \frac{1}{32} a^{7} + \frac{1}{32} a^{5}$, $\frac{1}{7872} a^{12} - \frac{1}{1312} a^{11} + \frac{121}{7872} a^{10} - \frac{29}{3936} a^{9} - \frac{15}{2624} a^{8} + \frac{77}{1312} a^{7} + \frac{1}{2624} a^{6} + \frac{11}{1312} a^{5} + \frac{25}{246} a^{4} - \frac{9}{164} a^{3} - \frac{79}{492} a^{2} + \frac{11}{246} a - \frac{4}{123}$, $\frac{1}{7872} a^{13} + \frac{85}{7872} a^{11} - \frac{35}{3936} a^{10} - \frac{49}{2624} a^{9} + \frac{1}{41} a^{8} + \frac{105}{2624} a^{7} + \frac{55}{1312} a^{6} - \frac{263}{3936} a^{5} + \frac{77}{656} a^{4} + \frac{5}{492} a^{3} + \frac{10}{123} a^{2} - \frac{65}{246} a - \frac{8}{41}$, $\frac{1}{6439296} a^{14} - \frac{7}{6439296} a^{13} - \frac{229}{6439296} a^{12} + \frac{1465}{6439296} a^{11} - \frac{76027}{6439296} a^{10} - \frac{35917}{6439296} a^{9} + \frac{9123}{2146432} a^{8} + \frac{40809}{2146432} a^{7} + \frac{43375}{3219648} a^{6} - \frac{24235}{201228} a^{5} - \frac{35581}{804912} a^{4} - \frac{9349}{100614} a^{3} + \frac{217}{16769} a^{2} + \frac{11323}{50307} a - \frac{20321}{50307}$, $\frac{1}{29833258368} a^{15} + \frac{2309}{29833258368} a^{14} - \frac{4069}{264011136} a^{13} - \frac{1436879}{29833258368} a^{12} + \frac{62839501}{29833258368} a^{11} + \frac{21333757}{9944419456} a^{10} - \frac{127622777}{9944419456} a^{9} - \frac{96748295}{9944419456} a^{8} - \frac{315442433}{14916629184} a^{7} - \frac{54558673}{3729157296} a^{6} - \frac{121794583}{7458314592} a^{5} + \frac{98845169}{1864578648} a^{4} + \frac{211528033}{1864578648} a^{3} + \frac{130015835}{932289324} a^{2} - \frac{19427658}{77690777} a + \frac{26249003}{77690777}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 4824829.07092 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\wr C_4$ (as 16T157):
| A solvable group of order 64 |
| The 13 conjugacy class representatives for $C_2\wr C_4$ |
| Character table for $C_2\wr C_4$ |
Intermediate fields
| \(\Q(\sqrt{41}) \), 4.4.68921.1, 8.4.175753856917.1 x2, 8.4.6502892705929.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 8 siblings: | data not computed |
| Degree 16 siblings: | data not computed |
| Degree 32 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/3.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/5.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/13.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/17.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/19.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{8}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{8}$ | R | R | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{8}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $37$ | $\Q_{37}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{37}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{37}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{37}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 37.2.0.1 | $x^{2} - x + 5$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 37.2.0.1 | $x^{2} - x + 5$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 37.2.1.2 | $x^{2} + 74$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 37.2.1.2 | $x^{2} + 74$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 37.4.2.1 | $x^{4} + 333 x^{2} + 34225$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| $41$ | 41.4.3.1 | $x^{4} - 41$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ |
| 41.4.3.1 | $x^{4} - 41$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 41.4.3.1 | $x^{4} - 41$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 41.4.3.1 | $x^{4} - 41$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ |