Normalized defining polynomial
\( x^{16} - 4 x^{15} + 250 x^{14} - 421 x^{13} + 8969 x^{12} + 66321 x^{11} - 1139968 x^{10} + 8421507 x^{9} - 45091632 x^{8} + 114656041 x^{7} - 71808218 x^{6} - 620145820 x^{5} + 2803253366 x^{4} - 552382365 x^{3} - 7887221570 x^{2} - 1289438969 x - 1711681339 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[4, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(4003010667744610631429360934274392034057=43^{6}\cdot 97^{15}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $298.64$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $43, 97$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $\frac{1}{67513105599963908710761975226144362511300826911495934866912798691028791849554741} a^{15} + \frac{26983876235921660426161606139870716573128479535363886134443250619234578398831096}{67513105599963908710761975226144362511300826911495934866912798691028791849554741} a^{14} - \frac{32599745801988504508198935417226252713496495534241400772880723538250902269649187}{67513105599963908710761975226144362511300826911495934866912798691028791849554741} a^{13} - \frac{10752611189017252927254105287493542543973954751626028619315434053511833005890230}{67513105599963908710761975226144362511300826911495934866912798691028791849554741} a^{12} + \frac{21450626439229060407252927976888658225002766180196948063408877561164705790360358}{67513105599963908710761975226144362511300826911495934866912798691028791849554741} a^{11} - \frac{6252037707578431377924106034695355428168422255518013995303566876986817902771900}{67513105599963908710761975226144362511300826911495934866912798691028791849554741} a^{10} - \frac{32365855797499663472621291080946571630099146702409254548371968228343404566891092}{67513105599963908710761975226144362511300826911495934866912798691028791849554741} a^{9} + \frac{26777398907239004491845682103619088231030200230765237822546071598595400988402544}{67513105599963908710761975226144362511300826911495934866912798691028791849554741} a^{8} + \frac{831509475455106170345499278688169120727371367080040195213462082283492484981609}{67513105599963908710761975226144362511300826911495934866912798691028791849554741} a^{7} + \frac{30460772537153596683922872235098449966140955714020963315308081735079992447238564}{67513105599963908710761975226144362511300826911495934866912798691028791849554741} a^{6} + \frac{17975047777089019224170339893887799227480938206090916384933712185586613282910861}{67513105599963908710761975226144362511300826911495934866912798691028791849554741} a^{5} + \frac{28085884427495202492347005270019919092675571078001548681394097355665368488312068}{67513105599963908710761975226144362511300826911495934866912798691028791849554741} a^{4} - \frac{6689752156697736150948034857013691928671877275477615413184246403567738815703723}{67513105599963908710761975226144362511300826911495934866912798691028791849554741} a^{3} - \frac{30710016837805458680228922328846401643867626249416769263742852636302972076978003}{67513105599963908710761975226144362511300826911495934866912798691028791849554741} a^{2} - \frac{9736104001080101402769853426909170877198951163234383789305124760810738173838890}{67513105599963908710761975226144362511300826911495934866912798691028791849554741} a - \frac{26757149414572419498440684796111407188416918074559353017509913214888702690696628}{67513105599963908710761975226144362511300826911495934866912798691028791849554741}$
Class group and class number
$C_{2}\times C_{6}\times C_{6}$, which has order $72$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 264926220872 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$(C_2\times C_8).D_4$ (as 16T306):
| A solvable group of order 128 |
| The 26 conjugacy class representatives for $(C_2\times C_8).D_4$ |
| Character table for $(C_2\times C_8).D_4$ is not computed |
Intermediate fields
| \(\Q(\sqrt{97}) \), 4.4.912673.1, 8.8.80798284478113.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ | $16$ | $16$ | ${\href{/LocalNumberField/11.8.0.1}{8} }^{2}$ | $16$ | $16$ | $16$ | $16$ | $16$ | ${\href{/LocalNumberField/31.8.0.1}{8} }^{2}$ | $16$ | $16$ | R | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ | $16$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $43$ | 43.4.2.2 | $x^{4} - 43 x^{2} + 5547$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ |
| 43.4.0.1 | $x^{4} - x + 20$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 43.4.2.2 | $x^{4} - 43 x^{2} + 5547$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 43.4.2.2 | $x^{4} - 43 x^{2} + 5547$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 97 | Data not computed | ||||||