Normalized defining polynomial
\( x^{16} - 2 x^{15} + 284 x^{14} - 1567 x^{13} + 22547 x^{12} - 304668 x^{11} + 167473 x^{10} - 16109541 x^{9} - 22237642 x^{8} - 7899129 x^{7} - 1868635159 x^{6} + 7724948460 x^{5} - 34228322558 x^{4} + 67298006331 x^{3} - 114722294026 x^{2} - 187686089996 x + 416833742984 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[4, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(397286244885795491769071181517306466749106209=71^{10}\cdot 73^{14}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $612.98$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $71, 73$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{2} a^{4} - \frac{1}{2} a$, $\frac{1}{2} a^{5} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{6} - \frac{1}{2} a^{3}$, $\frac{1}{4} a^{7} - \frac{1}{2} a^{3} - \frac{1}{4} a - \frac{1}{2}$, $\frac{1}{8} a^{8} - \frac{1}{8} a^{2} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{8} a^{9} - \frac{1}{8} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{8} a^{10} - \frac{1}{8} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2}$, $\frac{1}{16} a^{11} - \frac{1}{16} a^{8} - \frac{1}{16} a^{5} - \frac{1}{4} a^{4} - \frac{1}{4} a^{3} + \frac{1}{16} a^{2} + \frac{1}{4} a + \frac{1}{4}$, $\frac{1}{3552} a^{12} - \frac{15}{1184} a^{11} + \frac{25}{1776} a^{10} + \frac{1}{32} a^{9} - \frac{43}{1184} a^{8} + \frac{25}{296} a^{7} + \frac{77}{1184} a^{6} + \frac{275}{1184} a^{5} + \frac{79}{1776} a^{4} + \frac{1309}{3552} a^{3} - \frac{707}{3552} a^{2} + \frac{359}{888} a + \frac{43}{888}$, $\frac{1}{14208} a^{13} - \frac{1}{14208} a^{12} - \frac{47}{1776} a^{11} + \frac{91}{14208} a^{10} - \frac{191}{4736} a^{9} + \frac{103}{2368} a^{8} - \frac{15}{128} a^{7} + \frac{3}{128} a^{6} - \frac{77}{1776} a^{5} - \frac{1063}{14208} a^{4} + \frac{907}{4736} a^{3} + \frac{815}{7104} a^{2} + \frac{1631}{3552} a + \frac{391}{1776}$, $\frac{1}{4660224} a^{14} + \frac{7}{2330112} a^{13} + \frac{469}{4660224} a^{12} - \frac{87761}{4660224} a^{11} + \frac{15169}{291264} a^{10} - \frac{9911}{1553408} a^{9} - \frac{64933}{1553408} a^{8} + \frac{83885}{776704} a^{7} + \frac{139103}{4660224} a^{6} - \frac{706507}{4660224} a^{5} + \frac{6079}{72816} a^{4} - \frac{680941}{1553408} a^{3} - \frac{626407}{2330112} a^{2} + \frac{76105}{388352} a + \frac{260119}{582528}$, $\frac{1}{88620123658417497207783738440921360158446087822156913708384776916992} a^{15} - \frac{7099314873801013515202772357055058737216645270881342339411879}{88620123658417497207783738440921360158446087822156913708384776916992} a^{14} - \frac{68823970295119094102561453697851869358004588762834379532983441}{88620123658417497207783738440921360158446087822156913708384776916992} a^{13} + \frac{1477427216914493281133628334203547882741677024208152763531253275}{44310061829208748603891869220460680079223043911078456854192388458496} a^{12} + \frac{897454890767786546434038534262962344763167370145626532284616357799}{29540041219472499069261246146973786719482029274052304569461592305664} a^{11} - \frac{584151591535880726735685749617290223417437706274885192596593070183}{29540041219472499069261246146973786719482029274052304569461592305664} a^{10} + \frac{474361370912776216164206384439095871259288327121344632576194933551}{14770020609736249534630623073486893359741014637026152284730796152832} a^{9} + \frac{1528926085898456078910380329592930238454009966073283761277175167843}{29540041219472499069261246146973786719482029274052304569461592305664} a^{8} - \frac{8183876296840041623961265274317427919996087516551607831636984720775}{88620123658417497207783738440921360158446087822156913708384776916992} a^{7} - \frac{1632616690023996279497431863358677199516283940286019779206168269977}{14770020609736249534630623073486893359741014637026152284730796152832} a^{6} - \frac{19055907175956280885568196127920019995595486346504366958823449347929}{88620123658417497207783738440921360158446087822156913708384776916992} a^{5} - \frac{3035366586979357771173130001414201527689165675268653140329975288301}{29540041219472499069261246146973786719482029274052304569461592305664} a^{4} - \frac{8982286281535824334378168569978360804756179296940914310047295054633}{29540041219472499069261246146973786719482029274052304569461592305664} a^{3} + \frac{13106536983335455827930217693801252879678109509135688822432727360953}{44310061829208748603891869220460680079223043911078456854192388458496} a^{2} + \frac{3441572144366875530369803444989400085152438587850789027810940829885}{7385010304868124767315311536743446679870507318513076142365398076416} a - \frac{1677645804528261064753576916058103394363323194788244071262324638801}{3692505152434062383657655768371723339935253659256538071182699038208}$
Class group and class number
$C_{2}\times C_{2}\times C_{4}$, which has order $16$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 483266263146000000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 512 |
| The 32 conjugacy class representatives for t16n817 |
| Character table for t16n817 is not computed |
Intermediate fields
| \(\Q(\sqrt{73}) \), 4.4.389017.1, 8.8.280732967047165372057.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/2.1.0.1}{1} }^{8}$ | ${\href{/LocalNumberField/3.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/5.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/11.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/13.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/17.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/31.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/37.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{8}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{12}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/47.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/59.8.0.1}{8} }^{2}$ |
Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 71 | Data not computed | ||||||
| $73$ | 73.8.7.3 | $x^{8} - 45625$ | $8$ | $1$ | $7$ | $C_8$ | $[\ ]_{8}$ |
| 73.8.7.3 | $x^{8} - 45625$ | $8$ | $1$ | $7$ | $C_8$ | $[\ ]_{8}$ | |