Properties

Label 16.4.39362560000...0000.2
Degree $16$
Signature $[4, 6]$
Discriminant $2^{24}\cdot 5^{12}\cdot 31^{2}$
Root discriminant $14.53$
Ramified primes $2, 5, 31$
Class number $1$
Class group Trivial
Galois group $C_2^4.C_2^3.C_2$ (as 16T547)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1, 2, -4, 30, 1, -94, 40, 6, 102, -98, 20, -32, 36, -10, 4, -4, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^16 - 4*x^15 + 4*x^14 - 10*x^13 + 36*x^12 - 32*x^11 + 20*x^10 - 98*x^9 + 102*x^8 + 6*x^7 + 40*x^6 - 94*x^5 + x^4 + 30*x^3 - 4*x^2 + 2*x + 1)
 
gp: K = bnfinit(x^16 - 4*x^15 + 4*x^14 - 10*x^13 + 36*x^12 - 32*x^11 + 20*x^10 - 98*x^9 + 102*x^8 + 6*x^7 + 40*x^6 - 94*x^5 + x^4 + 30*x^3 - 4*x^2 + 2*x + 1, 1)
 

Normalized defining polynomial

\( x^{16} - 4 x^{15} + 4 x^{14} - 10 x^{13} + 36 x^{12} - 32 x^{11} + 20 x^{10} - 98 x^{9} + 102 x^{8} + 6 x^{7} + 40 x^{6} - 94 x^{5} + x^{4} + 30 x^{3} - 4 x^{2} + 2 x + 1 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $16$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[4, 6]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(3936256000000000000=2^{24}\cdot 5^{12}\cdot 31^{2}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $14.53$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $2, 5, 31$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $\frac{1}{11} a^{14} + \frac{4}{11} a^{13} - \frac{5}{11} a^{12} - \frac{5}{11} a^{11} + \frac{3}{11} a^{10} - \frac{1}{11} a^{9} - \frac{1}{11} a^{8} + \frac{1}{11} a^{7} - \frac{3}{11} a^{6} - \frac{4}{11} a^{5} - \frac{1}{11} a^{4} - \frac{4}{11} a^{3} - \frac{1}{11} a^{2} - \frac{1}{11} a - \frac{4}{11}$, $\frac{1}{7022134559} a^{15} + \frac{216797110}{7022134559} a^{14} - \frac{1184604390}{7022134559} a^{13} - \frac{2350135211}{7022134559} a^{12} - \frac{1169603642}{7022134559} a^{11} - \frac{606268670}{7022134559} a^{10} - \frac{3445492599}{7022134559} a^{9} + \frac{1334930688}{7022134559} a^{8} - \frac{49023991}{7022134559} a^{7} - \frac{1845040261}{7022134559} a^{6} - \frac{3000874936}{7022134559} a^{5} - \frac{1758885361}{7022134559} a^{4} - \frac{989465514}{7022134559} a^{3} - \frac{2684524017}{7022134559} a^{2} - \frac{2533153108}{7022134559} a + \frac{516588377}{7022134559}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

Trivial group, which has order $1$

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $9$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 782.958693592 \)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$C_2^4.C_2^3.C_2$ (as 16T547):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A solvable group of order 256
The 40 conjugacy class representatives for $C_2^4.C_2^3.C_2$
Character table for $C_2^4.C_2^3.C_2$ is not computed

Intermediate fields

\(\Q(\sqrt{5}) \), 4.2.400.1, \(\Q(\zeta_{20})^+\), 4.2.2000.1, 8.2.4960000.1, 8.2.1984000000.2, 8.4.64000000.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Degree 16 siblings: data not computed
Degree 32 siblings: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type R ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ R ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/11.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/19.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{4}$ ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/29.2.0.1}{2} }^{8}$ R ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/41.2.0.1}{2} }^{8}$ ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/59.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{8}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
2Data not computed
5Data not computed
$31$31.2.0.1$x^{2} - x + 12$$1$$2$$0$$C_2$$[\ ]^{2}$
31.2.0.1$x^{2} - x + 12$$1$$2$$0$$C_2$$[\ ]^{2}$
31.4.0.1$x^{4} - 2 x + 17$$1$$4$$0$$C_4$$[\ ]^{4}$
31.4.2.1$x^{4} + 713 x^{2} + 138384$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
31.4.0.1$x^{4} - 2 x + 17$$1$$4$$0$$C_4$$[\ ]^{4}$