Properties

Label 16.4.38829002495...8656.3
Degree $16$
Signature $[4, 6]$
Discriminant $2^{36}\cdot 3^{4}\cdot 17^{8}$
Root discriminant $25.81$
Ramified primes $2, 3, 17$
Class number $1$ (GRH)
Class group Trivial (GRH)
Galois group $(C_2^2\times D_4).C_2^3$ (as 16T600)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![81, 0, -270, 0, -693, 0, 870, 0, 334, 0, -106, 0, 43, 0, -6, 0, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^16 - 6*x^14 + 43*x^12 - 106*x^10 + 334*x^8 + 870*x^6 - 693*x^4 - 270*x^2 + 81)
 
gp: K = bnfinit(x^16 - 6*x^14 + 43*x^12 - 106*x^10 + 334*x^8 + 870*x^6 - 693*x^4 - 270*x^2 + 81, 1)
 

Normalized defining polynomial

\( x^{16} - 6 x^{14} + 43 x^{12} - 106 x^{10} + 334 x^{8} + 870 x^{6} - 693 x^{4} - 270 x^{2} + 81 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $16$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[4, 6]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(38829002495805049798656=2^{36}\cdot 3^{4}\cdot 17^{8}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $25.81$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $2, 3, 17$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{3} a^{10} + \frac{1}{3} a^{6} - \frac{1}{3} a^{4} + \frac{1}{3} a^{2}$, $\frac{1}{3} a^{11} + \frac{1}{3} a^{7} - \frac{1}{3} a^{5} + \frac{1}{3} a^{3}$, $\frac{1}{18} a^{12} - \frac{1}{6} a^{10} + \frac{7}{18} a^{8} - \frac{2}{9} a^{6} + \frac{7}{18} a^{4} - \frac{1}{2} a^{2} - \frac{1}{2}$, $\frac{1}{18} a^{13} - \frac{1}{6} a^{11} + \frac{7}{18} a^{9} - \frac{2}{9} a^{7} + \frac{7}{18} a^{5} - \frac{1}{2} a^{3} - \frac{1}{2} a$, $\frac{1}{82425293388} a^{14} - \frac{1}{36} a^{13} + \frac{290822303}{13737548898} a^{12} + \frac{1}{12} a^{11} + \frac{6692530481}{41212646694} a^{10} + \frac{11}{36} a^{9} - \frac{11773214359}{82425293388} a^{8} + \frac{1}{9} a^{7} - \frac{18627774587}{82425293388} a^{6} + \frac{11}{36} a^{5} - \frac{1089774923}{13737548898} a^{4} - \frac{1}{4} a^{3} + \frac{83485355}{4579182966} a^{2} - \frac{1}{4} a - \frac{216936745}{3052788644}$, $\frac{1}{82425293388} a^{15} - \frac{181552555}{27475097796} a^{13} - \frac{1}{36} a^{12} - \frac{7221262385}{82425293388} a^{11} + \frac{1}{12} a^{10} + \frac{6706145977}{41212646694} a^{9} + \frac{11}{36} a^{8} - \frac{36944506451}{82425293388} a^{7} + \frac{1}{9} a^{6} - \frac{4033704313}{9158365932} a^{5} + \frac{11}{36} a^{4} + \frac{3982956515}{9158365932} a^{3} - \frac{1}{4} a^{2} - \frac{490066953}{1526394322} a - \frac{1}{4}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

Trivial group, which has order $1$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $9$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 194551.269597 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$(C_2^2\times D_4).C_2^3$ (as 16T600):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A solvable group of order 256
The 40 conjugacy class representatives for $(C_2^2\times D_4).C_2^3$
Character table for $(C_2^2\times D_4).C_2^3$ is not computed

Intermediate fields

\(\Q(\sqrt{17}) \), 4.2.1156.1, 4.2.9248.1, 4.4.9248.1, 8.4.342102016.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Degree 16 siblings: data not computed
Degree 32 siblings: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type R R ${\href{/LocalNumberField/5.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/11.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/13.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{4}$ R ${\href{/LocalNumberField/19.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{4}$ ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/29.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/31.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/41.2.0.1}{2} }^{8}$ ${\href{/LocalNumberField/43.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/53.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{4}$ ${\href{/LocalNumberField/59.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{4}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$2$2.8.24.35$x^{8} + 4 x^{6} + 10 x^{4} + 4 x^{2} + 8 x + 6$$8$$1$$24$$Q_8:C_2$$[2, 3, 4]^{2}$
2.8.12.13$x^{8} + 12 x^{4} + 16$$4$$2$$12$$D_4$$[2, 2]^{2}$
$3$3.4.0.1$x^{4} - x + 2$$1$$4$$0$$C_4$$[\ ]^{4}$
3.4.0.1$x^{4} - x + 2$$1$$4$$0$$C_4$$[\ ]^{4}$
3.8.4.1$x^{8} + 36 x^{4} - 27 x^{2} + 324$$2$$4$$4$$C_4\times C_2$$[\ ]_{2}^{4}$
$17$17.4.2.1$x^{4} + 85 x^{2} + 2601$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
17.4.2.1$x^{4} + 85 x^{2} + 2601$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
17.4.2.1$x^{4} + 85 x^{2} + 2601$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
17.4.2.1$x^{4} + 85 x^{2} + 2601$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$