Properties

Label 16.4.38200537031...0000.2
Degree $16$
Signature $[4, 6]$
Discriminant $2^{36}\cdot 3^{10}\cdot 5^{8}\cdot 241$
Root discriminant $29.78$
Ramified primes $2, 3, 5, 241$
Class number $2$ (GRH)
Class group $[2]$ (GRH)
Galois group 16T1378

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-1724, 6624, -11672, 12328, -8112, 2448, 796, -1400, 1046, -656, 352, -92, -38, 36, -4, -4, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^16 - 4*x^15 - 4*x^14 + 36*x^13 - 38*x^12 - 92*x^11 + 352*x^10 - 656*x^9 + 1046*x^8 - 1400*x^7 + 796*x^6 + 2448*x^5 - 8112*x^4 + 12328*x^3 - 11672*x^2 + 6624*x - 1724)
 
gp: K = bnfinit(x^16 - 4*x^15 - 4*x^14 + 36*x^13 - 38*x^12 - 92*x^11 + 352*x^10 - 656*x^9 + 1046*x^8 - 1400*x^7 + 796*x^6 + 2448*x^5 - 8112*x^4 + 12328*x^3 - 11672*x^2 + 6624*x - 1724, 1)
 

Normalized defining polynomial

\( x^{16} - 4 x^{15} - 4 x^{14} + 36 x^{13} - 38 x^{12} - 92 x^{11} + 352 x^{10} - 656 x^{9} + 1046 x^{8} - 1400 x^{7} + 796 x^{6} + 2448 x^{5} - 8112 x^{4} + 12328 x^{3} - 11672 x^{2} + 6624 x - 1724 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $16$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[4, 6]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(382005370316390400000000=2^{36}\cdot 3^{10}\cdot 5^{8}\cdot 241\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $29.78$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $2, 3, 5, 241$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{2} a^{8}$, $\frac{1}{2} a^{9}$, $\frac{1}{2} a^{10}$, $\frac{1}{2} a^{11}$, $\frac{1}{2} a^{12}$, $\frac{1}{2} a^{13}$, $\frac{1}{814} a^{14} - \frac{21}{407} a^{13} - \frac{25}{407} a^{12} + \frac{41}{407} a^{11} - \frac{6}{407} a^{10} + \frac{15}{407} a^{9} + \frac{97}{407} a^{8} - \frac{14}{37} a^{7} + \frac{133}{407} a^{6} + \frac{65}{407} a^{5} + \frac{136}{407} a^{4} + \frac{30}{407} a^{3} - \frac{181}{407} a^{2} + \frac{5}{407} a + \frac{171}{407}$, $\frac{1}{13754219565941982226} a^{15} + \frac{92876062574694}{361953146472157427} a^{14} + \frac{1472435013996980626}{6877109782970991113} a^{13} - \frac{3437752200981524653}{13754219565941982226} a^{12} + \frac{3165515462921036289}{13754219565941982226} a^{11} - \frac{55853478250832759}{723906292944314854} a^{10} - \frac{3295855593920704495}{13754219565941982226} a^{9} + \frac{7834784449929023}{63092750302486157} a^{8} + \frac{2084968490658118682}{6877109782970991113} a^{7} - \frac{1753436800991263563}{6877109782970991113} a^{6} - \frac{1002864099170900943}{6877109782970991113} a^{5} + \frac{267039707968238441}{6877109782970991113} a^{4} + \frac{167757784408577339}{625191798451908283} a^{3} - \frac{2039080235755844594}{6877109782970991113} a^{2} + \frac{1528601069796468343}{6877109782970991113} a + \frac{2986992600657807677}{6877109782970991113}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

$C_{2}$, which has order $2$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $9$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 135362.766701 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

16T1378:

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A solvable group of order 2048
The 95 conjugacy class representatives for t16n1378 are not computed
Character table for t16n1378 is not computed

Intermediate fields

\(\Q(\sqrt{2}) \), \(\Q(\sqrt{5}) \), \(\Q(\sqrt{3}) \), \(\Q(\sqrt{30}) \), \(\Q(\sqrt{10}) \), \(\Q(\sqrt{6}) \), \(\Q(\sqrt{15}) \), \(\Q(\sqrt{6}, \sqrt{10})\), \(\Q(\sqrt{2}, \sqrt{5})\), \(\Q(\sqrt{3}, \sqrt{10})\), \(\Q(\sqrt{2}, \sqrt{3})\), \(\Q(\sqrt{5}, \sqrt{6})\), \(\Q(\sqrt{3}, \sqrt{5})\), \(\Q(\sqrt{2}, \sqrt{15})\), 8.8.3317760000.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Degree 16 siblings: data not computed
Degree 32 siblings: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type R R R ${\href{/LocalNumberField/7.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }^{2}$ ${\href{/LocalNumberField/11.4.0.1}{4} }{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{6}$ ${\href{/LocalNumberField/13.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{2}$ ${\href{/LocalNumberField/17.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{2}$ ${\href{/LocalNumberField/19.4.0.1}{4} }{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{6}$ ${\href{/LocalNumberField/23.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{2}$ ${\href{/LocalNumberField/29.2.0.1}{2} }^{8}$ ${\href{/LocalNumberField/31.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{2}$ ${\href{/LocalNumberField/37.4.0.1}{4} }{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{6}$ ${\href{/LocalNumberField/41.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/43.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{2}$ ${\href{/LocalNumberField/47.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/53.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
2Data not computed
$3$3.8.6.1$x^{8} + 9 x^{4} + 36$$4$$2$$6$$Q_8$$[\ ]_{4}^{2}$
3.8.4.1$x^{8} + 36 x^{4} - 27 x^{2} + 324$$2$$4$$4$$C_4\times C_2$$[\ ]_{2}^{4}$
$5$5.4.2.1$x^{4} + 15 x^{2} + 100$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
5.4.2.1$x^{4} + 15 x^{2} + 100$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
5.8.4.1$x^{8} + 10 x^{6} + 125 x^{4} + 2500$$2$$4$$4$$C_4\times C_2$$[\ ]_{2}^{4}$
241Data not computed