Normalized defining polynomial
\( x^{16} - 2 x^{15} + 18 x^{14} - 22 x^{13} + 123 x^{12} + 76 x^{11} + 218 x^{10} + 1830 x^{9} - 1475 x^{8} + 7618 x^{7} - 7324 x^{6} + 5362 x^{5} - 4906 x^{4} - 30404 x^{3} + 30716 x^{2} - 54512 x + 56044 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[4, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(372363261088299238400000000=2^{16}\cdot 5^{8}\cdot 89^{3}\cdot 379^{4}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $45.78$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 89, 379$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{2} a^{12} - \frac{1}{2} a^{8} - \frac{1}{2} a^{4}$, $\frac{1}{14} a^{13} - \frac{1}{14} a^{12} - \frac{1}{14} a^{9} + \frac{5}{14} a^{8} + \frac{1}{7} a^{7} + \frac{3}{7} a^{6} - \frac{1}{14} a^{5} - \frac{1}{2} a^{4} - \frac{2}{7} a^{3} - \frac{1}{7} a^{2} + \frac{2}{7} a - \frac{3}{7}$, $\frac{1}{14} a^{14} - \frac{1}{14} a^{12} - \frac{1}{14} a^{10} + \frac{2}{7} a^{9} - \frac{1}{2} a^{8} - \frac{3}{7} a^{7} + \frac{5}{14} a^{6} + \frac{3}{7} a^{5} + \frac{3}{14} a^{4} - \frac{3}{7} a^{3} + \frac{1}{7} a^{2} - \frac{1}{7} a - \frac{3}{7}$, $\frac{1}{14547814841076683002954558602} a^{15} + \frac{112122895231928445950365781}{4849271613692227667651519534} a^{14} - \frac{13682614825119583047451718}{2424635806846113833825759767} a^{13} + \frac{1864238098394165751976497011}{14547814841076683002954558602} a^{12} - \frac{971378360692607005148683373}{14547814841076683002954558602} a^{11} - \frac{101654502523327447357543017}{4849271613692227667651519534} a^{10} - \frac{158996940603035369160783146}{7273907420538341501477279301} a^{9} - \frac{4062999853635089600375385977}{14547814841076683002954558602} a^{8} - \frac{196377160554908680735690161}{4849271613692227667651519534} a^{7} - \frac{5774084059124234042631827585}{14547814841076683002954558602} a^{6} - \frac{1243459738253533868276780635}{7273907420538341501477279301} a^{5} + \frac{193986955032537225280160799}{4849271613692227667651519534} a^{4} - \frac{353898903208566154737140276}{1039129631505477357353897043} a^{3} - \frac{2850764377265037312509814863}{7273907420538341501477279301} a^{2} - \frac{1067621347914095599229581989}{2424635806846113833825759767} a + \frac{3164077528561284326259346784}{7273907420538341501477279301}$
Class group and class number
$C_{2}$, which has order $2$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 8445204.43032 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 73728 |
| The 152 conjugacy class representatives for t16n1862 are not computed |
| Character table for t16n1862 is not computed |
Intermediate fields
| \(\Q(\sqrt{5}) \), 8.8.22982560000.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.12.0.1}{12} }{,}\,{\href{/LocalNumberField/3.2.0.1}{2} }^{2}$ | R | ${\href{/LocalNumberField/7.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/7.4.0.1}{4} }$ | ${\href{/LocalNumberField/11.6.0.1}{6} }{,}\,{\href{/LocalNumberField/11.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/13.12.0.1}{12} }{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }{,}\,{\href{/LocalNumberField/19.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }{,}\,{\href{/LocalNumberField/23.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }{,}\,{\href{/LocalNumberField/29.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }{,}\,{\href{/LocalNumberField/31.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }{,}\,{\href{/LocalNumberField/37.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/43.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/43.4.0.1}{4} }$ | ${\href{/LocalNumberField/47.12.0.1}{12} }{,}\,{\href{/LocalNumberField/47.4.0.1}{4} }$ | ${\href{/LocalNumberField/53.12.0.1}{12} }{,}\,{\href{/LocalNumberField/53.4.0.1}{4} }$ | ${\href{/LocalNumberField/59.6.0.1}{6} }{,}\,{\href{/LocalNumberField/59.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.8.8.12 | $x^{8} + 2 x^{5} + 2 x^{4} + 4$ | $4$ | $2$ | $8$ | $A_4\wr C_2$ | $[4/3, 4/3, 4/3, 4/3]_{3}^{6}$ |
| 2.8.8.12 | $x^{8} + 2 x^{5} + 2 x^{4} + 4$ | $4$ | $2$ | $8$ | $A_4\wr C_2$ | $[4/3, 4/3, 4/3, 4/3]_{3}^{6}$ | |
| $5$ | 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 5.8.4.1 | $x^{8} + 10 x^{6} + 125 x^{4} + 2500$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| $89$ | 89.2.0.1 | $x^{2} - x + 6$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 89.2.0.1 | $x^{2} - x + 6$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 89.3.0.1 | $x^{3} - x + 7$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |
| 89.3.0.1 | $x^{3} - x + 7$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |
| 89.6.3.1 | $x^{6} - 178 x^{4} + 7921 x^{2} - 34543481$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| 379 | Data not computed | ||||||