Properties

Label 16.4.370...600.2
Degree $16$
Signature $[4, 6]$
Discriminant $3.704\times 10^{21}$
Root discriminant \(22.29\)
Ramified primes $2,3,5,1327$
Class number $1$ (GRH)
Class group trivial (GRH)
Galois group $C_2^8.S_4$ (as 16T1664)

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Normalized defining polynomial

sage: x = polygen(QQ); K.<a> = NumberField(x^16 + 7*x^14 + 19*x^12 + 12*x^10 - 29*x^8 - 3*x^6 + 3*x^4 - 18*x^2 + 9)
 
gp: K = bnfinit(y^16 + 7*y^14 + 19*y^12 + 12*y^10 - 29*y^8 - 3*y^6 + 3*y^4 - 18*y^2 + 9, 1)
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^16 + 7*x^14 + 19*x^12 + 12*x^10 - 29*x^8 - 3*x^6 + 3*x^4 - 18*x^2 + 9);
 
oscar: Qx, x = PolynomialRing(QQ); K, a = NumberField(x^16 + 7*x^14 + 19*x^12 + 12*x^10 - 29*x^8 - 3*x^6 + 3*x^4 - 18*x^2 + 9)
 

\( x^{16} + 7x^{14} + 19x^{12} + 12x^{10} - 29x^{8} - 3x^{6} + 3x^{4} - 18x^{2} + 9 \) Copy content Toggle raw display

sage: K.defining_polynomial()
 
gp: K.pol
 
magma: DefiningPolynomial(K);
 
oscar: defining_polynomial(K)
 

Invariants

Degree:  $16$
sage: K.degree()
 
gp: poldegree(K.pol)
 
magma: Degree(K);
 
oscar: degree(K)
 
Signature:  $[4, 6]$
sage: K.signature()
 
gp: K.sign
 
magma: Signature(K);
 
oscar: signature(K)
 
Discriminant:   \(3703660408794134937600\) \(\medspace = 2^{16}\cdot 3^{6}\cdot 5^{2}\cdot 1327^{4}\) Copy content Toggle raw display
sage: K.disc()
 
gp: K.disc
 
magma: OK := Integers(K); Discriminant(OK);
 
oscar: OK = ring_of_integers(K); discriminant(OK)
 
Root discriminant:  \(22.29\)
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
magma: Abs(Discriminant(OK))^(1/Degree(K));
 
oscar: (1.0 * dK)^(1/degree(K))
 
Galois root discriminant:  not computed
Ramified primes:   \(2\), \(3\), \(5\), \(1327\) Copy content Toggle raw display
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
magma: PrimeDivisors(Discriminant(OK));
 
oscar: prime_divisors(discriminant((OK)))
 
Discriminant root field:  \(\Q\)
$\card{ \Aut(K/\Q) }$:  $4$
sage: K.automorphisms()
 
magma: Automorphisms(K);
 
oscar: automorphisms(K)
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{5}a^{10}+\frac{2}{5}a^{8}+\frac{1}{5}a^{4}-\frac{2}{5}$, $\frac{1}{5}a^{11}+\frac{2}{5}a^{9}+\frac{1}{5}a^{5}-\frac{2}{5}a$, $\frac{1}{45}a^{12}+\frac{4}{45}a^{10}+\frac{19}{45}a^{8}+\frac{7}{15}a^{6}-\frac{8}{45}a^{4}+\frac{1}{15}a^{2}+\frac{2}{15}$, $\frac{1}{45}a^{13}+\frac{4}{45}a^{11}+\frac{19}{45}a^{9}+\frac{7}{15}a^{7}-\frac{8}{45}a^{5}+\frac{1}{15}a^{3}+\frac{2}{15}a$, $\frac{1}{2745}a^{14}-\frac{7}{2745}a^{12}+\frac{56}{2745}a^{10}-\frac{1016}{2745}a^{8}-\frac{689}{2745}a^{6}+\frac{127}{2745}a^{4}-\frac{143}{305}a^{2}+\frac{449}{915}$, $\frac{1}{2745}a^{15}-\frac{7}{2745}a^{13}+\frac{56}{2745}a^{11}-\frac{1016}{2745}a^{9}-\frac{689}{2745}a^{7}+\frac{127}{2745}a^{5}-\frac{143}{305}a^{3}+\frac{449}{915}a$ Copy content Toggle raw display

sage: K.integral_basis()
 
gp: K.zk
 
magma: IntegralBasis(K);
 
oscar: basis(OK)
 

Monogenic:  Not computed
Index:  $1$
Inessential primes:  None

Class group and class number

Trivial group, which has order $1$ (assuming GRH)

sage: K.class_group().invariants()
 
gp: K.clgp
 
magma: ClassGroup(K);
 
oscar: class_group(K)
 

Unit group

sage: UK = K.unit_group()
 
magma: UK, fUK := UnitGroup(K);
 
oscar: UK, fUK = unit_group(OK)
 
Rank:  $9$
sage: UK.rank()
 
gp: K.fu
 
magma: UnitRank(K);
 
oscar: rank(UK)
 
Torsion generator:   \( -1 \)  (order $2$) Copy content Toggle raw display
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
oscar: torsion_units_generator(OK)
 
Fundamental units:   $\frac{18}{305}a^{14}+\frac{1184}{2745}a^{12}+\frac{3521}{2745}a^{10}+\frac{3524}{2745}a^{8}-\frac{170}{183}a^{6}-\frac{1813}{2745}a^{4}-\frac{260}{183}a^{2}-\frac{584}{915}$, $\frac{86}{2745}a^{14}+\frac{496}{2745}a^{12}+\frac{973}{2745}a^{10}-\frac{634}{2745}a^{8}-\frac{3256}{2745}a^{6}+\frac{2138}{2745}a^{4}-\frac{37}{305}a^{2}+\frac{110}{183}$, $\frac{22}{915}a^{14}+\frac{331}{2745}a^{12}+\frac{56}{549}a^{10}-\frac{406}{549}a^{8}-\frac{1372}{915}a^{6}+\frac{737}{549}a^{4}+\frac{844}{915}a^{2}-\frac{988}{915}$, $\frac{352}{2745}a^{14}+\frac{157}{183}a^{12}+\frac{672}{305}a^{10}+\frac{2939}{2745}a^{8}-\frac{9569}{2745}a^{6}+\frac{3407}{2745}a^{4}+\frac{211}{915}a^{2}-\frac{674}{915}$, $\frac{53}{2745}a^{14}+\frac{544}{2745}a^{12}+\frac{2236}{2745}a^{10}+\frac{4163}{2745}a^{8}+\frac{1913}{2745}a^{6}-\frac{2236}{2745}a^{4}+\frac{46}{305}a^{2}-\frac{145}{183}$, $\frac{59}{305}a^{15}-\frac{43}{549}a^{14}+\frac{806}{549}a^{13}-\frac{192}{305}a^{12}+\frac{12412}{2745}a^{11}-\frac{1919}{915}a^{10}+\frac{13408}{2745}a^{9}-\frac{7687}{2745}a^{8}-\frac{2759}{915}a^{7}+\frac{637}{2745}a^{6}-\frac{7166}{2745}a^{5}+\frac{4049}{2745}a^{4}-\frac{452}{915}a^{3}+\frac{1162}{915}a^{2}-\frac{3019}{915}a+\frac{1309}{915}$, $\frac{16}{2745}a^{15}+\frac{14}{549}a^{14}+\frac{44}{915}a^{13}+\frac{364}{2745}a^{12}+\frac{5}{61}a^{11}+\frac{199}{2745}a^{10}-\frac{1189}{2745}a^{9}-\frac{1096}{915}a^{8}-\frac{1180}{549}a^{7}-\frac{8336}{2745}a^{6}-\frac{7057}{2745}a^{5}+\frac{137}{915}a^{4}+\frac{323}{183}a^{3}+\frac{2849}{915}a^{2}+\frac{473}{183}a+\frac{432}{305}$, $\frac{262}{915}a^{15}-\frac{493}{2745}a^{14}+\frac{1948}{915}a^{13}-\frac{3686}{2745}a^{12}+\frac{5827}{915}a^{11}-\frac{11138}{2745}a^{10}+\frac{379}{61}a^{9}-\frac{11329}{2745}a^{8}-\frac{5021}{915}a^{7}+\frac{1726}{549}a^{6}-\frac{177}{61}a^{5}+\frac{6563}{2745}a^{4}-\frac{36}{305}a^{3}+\frac{82}{61}a^{2}-\frac{1556}{305}a+\frac{2452}{915}$, $\frac{203}{2745}a^{15}+\frac{34}{2745}a^{14}+\frac{181}{305}a^{13}+\frac{311}{2745}a^{12}+\frac{1817}{915}a^{11}+\frac{271}{549}a^{10}+\frac{7618}{2745}a^{9}+\frac{3337}{2745}a^{8}+\frac{1043}{2745}a^{7}+\frac{4573}{2745}a^{6}-\frac{266}{2745}a^{5}+\frac{2671}{2745}a^{4}+\frac{143}{915}a^{3}-\frac{104}{305}a^{2}-\frac{278}{183}a-\frac{106}{915}$ Copy content Toggle raw display (assuming GRH)
sage: UK.fundamental_units()
 
gp: K.fu
 
magma: [K|fUK(g): g in Generators(UK)];
 
oscar: [K(fUK(a)) for a in gens(UK)]
 
Regulator:  \( 35087.261258 \) (assuming GRH)
sage: K.regulator()
 
gp: K.reg
 
magma: Regulator(K);
 
oscar: regulator(K)
 

Class number formula

\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{4}\cdot(2\pi)^{6}\cdot 35087.261258 \cdot 1}{2\cdot\sqrt{3703660408794134937600}}\cr\approx \mathstrut & 0.28379392086 \end{aligned}\] (assuming GRH)

# self-contained SageMath code snippet to compute the analytic class number formula
 
x = polygen(QQ); K.<a> = NumberField(x^16 + 7*x^14 + 19*x^12 + 12*x^10 - 29*x^8 - 3*x^6 + 3*x^4 - 18*x^2 + 9)
 
DK = K.disc(); r1,r2 = K.signature(); RK = K.regulator(); RR = RK.parent()
 
hK = K.class_number(); wK = K.unit_group().torsion_generator().order();
 
2^r1 * (2*RR(pi))^r2 * RK * hK / (wK * RR(sqrt(abs(DK))))
 
# self-contained Pari/GP code snippet to compute the analytic class number formula
 
K = bnfinit(x^16 + 7*x^14 + 19*x^12 + 12*x^10 - 29*x^8 - 3*x^6 + 3*x^4 - 18*x^2 + 9, 1);
 
[polcoeff (lfunrootres (lfuncreate (K))[1][1][2], -1), 2^K.r1 * (2*Pi)^K.r2 * K.reg * K.no / (K.tu[1] * sqrt (abs (K.disc)))]
 
/* self-contained Magma code snippet to compute the analytic class number formula */
 
Qx<x> := PolynomialRing(QQ); K<a> := NumberField(x^16 + 7*x^14 + 19*x^12 + 12*x^10 - 29*x^8 - 3*x^6 + 3*x^4 - 18*x^2 + 9);
 
OK := Integers(K); DK := Discriminant(OK);
 
UK, fUK := UnitGroup(OK); clK, fclK := ClassGroup(OK);
 
r1,r2 := Signature(K); RK := Regulator(K); RR := Parent(RK);
 
hK := #clK; wK := #TorsionSubgroup(UK);
 
2^r1 * (2*Pi(RR))^r2 * RK * hK / (wK * Sqrt(RR!Abs(DK)));
 
# self-contained Oscar code snippet to compute the analytic class number formula
 
Qx, x = PolynomialRing(QQ); K, a = NumberField(x^16 + 7*x^14 + 19*x^12 + 12*x^10 - 29*x^8 - 3*x^6 + 3*x^4 - 18*x^2 + 9);
 
OK = ring_of_integers(K); DK = discriminant(OK);
 
UK, fUK = unit_group(OK); clK, fclK = class_group(OK);
 
r1,r2 = signature(K); RK = regulator(K); RR = parent(RK);
 
hK = order(clK); wK = torsion_units_order(K);
 
2^r1 * (2*pi)^r2 * RK * hK / (wK * sqrt(RR(abs(DK))))
 

Galois group

$C_2^8.S_4$ (as 16T1664):

sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
magma: G = GaloisGroup(K);
 
oscar: G, Gtx = galois_group(K); G, transitive_group_identification(G)
 
A solvable group of order 6144
The 105 conjugacy class representatives for $C_2^8.S_4$ are not computed
Character table for $C_2^8.S_4$ is not computed

Intermediate fields

4.4.3981.1, 8.4.12171541248.5, 8.4.60857706240.2, 8.4.79241805.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

sage: K.subfields()[1:-1]
 
gp: L = nfsubfields(K); L[2..length(b)]
 
magma: L := Subfields(K); L[2..#L];
 
oscar: subfields(K)[2:end-1]
 

Sibling fields

Degree 16 siblings: data not computed
Degree 32 siblings: data not computed
Minimal sibling: This field is its own minimal sibling

Frobenius cycle types

$p$ $2$ $3$ $5$ $7$ $11$ $13$ $17$ $19$ $23$ $29$ $31$ $37$ $41$ $43$ $47$ $53$ $59$
Cycle type R R R ${\href{/padicField/7.8.0.1}{8} }^{2}$ ${\href{/padicField/11.4.0.1}{4} }^{4}$ ${\href{/padicField/13.6.0.1}{6} }^{2}{,}\,{\href{/padicField/13.2.0.1}{2} }^{2}$ ${\href{/padicField/17.8.0.1}{8} }^{2}$ ${\href{/padicField/19.8.0.1}{8} }^{2}$ ${\href{/padicField/23.6.0.1}{6} }^{2}{,}\,{\href{/padicField/23.2.0.1}{2} }^{2}$ ${\href{/padicField/29.8.0.1}{8} }^{2}$ ${\href{/padicField/31.8.0.1}{8} }^{2}$ ${\href{/padicField/37.2.0.1}{2} }^{6}{,}\,{\href{/padicField/37.1.0.1}{1} }^{4}$ ${\href{/padicField/41.6.0.1}{6} }^{2}{,}\,{\href{/padicField/41.2.0.1}{2} }^{2}$ ${\href{/padicField/43.6.0.1}{6} }^{2}{,}\,{\href{/padicField/43.2.0.1}{2} }^{2}$ ${\href{/padicField/47.8.0.1}{8} }^{2}$ ${\href{/padicField/53.6.0.1}{6} }^{2}{,}\,{\href{/padicField/53.2.0.1}{2} }^{2}$ ${\href{/padicField/59.6.0.1}{6} }^{2}{,}\,{\href{/padicField/59.2.0.1}{2} }^{2}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Sage:
 
p = 7; [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
\\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Pari:
 
p = 7; pfac = idealprimedec(K, p); vector(length(pfac), j, [pfac[j][3], pfac[j][4]])
 
// to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7 in Magma:
 
p := 7; [<pr[2], Valuation(Norm(pr[1]), p)> : pr in Factorization(p*Integers(K))];
 
# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Oscar:
 
p = 7; pfac = factor(ideal(ring_of_integers(K), p)); [(e, valuation(norm(pr),p)) for (pr,e) in pfac]
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
\(2\) Copy content Toggle raw display Deg $16$$2$$8$$16$
\(3\) Copy content Toggle raw display 3.4.0.1$x^{4} + 2 x^{3} + 2$$1$$4$$0$$C_4$$[\ ]^{4}$
3.4.0.1$x^{4} + 2 x^{3} + 2$$1$$4$$0$$C_4$$[\ ]^{4}$
3.8.6.2$x^{8} + 6 x^{5} + 6 x^{4} + 18 x^{2} + 18 x + 9$$4$$2$$6$$D_4$$[\ ]_{4}^{2}$
\(5\) Copy content Toggle raw display 5.2.1.1$x^{2} + 5$$2$$1$$1$$C_2$$[\ ]_{2}$
5.2.1.1$x^{2} + 5$$2$$1$$1$$C_2$$[\ ]_{2}$
5.6.0.1$x^{6} + x^{4} + 4 x^{3} + x^{2} + 2$$1$$6$$0$$C_6$$[\ ]^{6}$
5.6.0.1$x^{6} + x^{4} + 4 x^{3} + x^{2} + 2$$1$$6$$0$$C_6$$[\ ]^{6}$
\(1327\) Copy content Toggle raw display Deg $2$$2$$1$$1$$C_2$$[\ ]_{2}$
Deg $2$$2$$1$$1$$C_2$$[\ ]_{2}$
Deg $2$$2$$1$$1$$C_2$$[\ ]_{2}$
Deg $2$$2$$1$$1$$C_2$$[\ ]_{2}$
Deg $4$$1$$4$$0$$C_4$$[\ ]^{4}$
Deg $4$$1$$4$$0$$C_4$$[\ ]^{4}$