Properties

Label 16.4.36582036480...0000.3
Degree $16$
Signature $[4, 6]$
Discriminant $2^{24}\cdot 3^{10}\cdot 5^{15}\cdot 11^{2}$
Root discriminant $34.29$
Ramified primes $2, 3, 5, 11$
Class number $2$ (GRH)
Class group $[2]$ (GRH)
Galois group 16T1584

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![4941, -3078, -18090, -16740, -13995, -9414, -2868, -420, 115, 580, -178, 114, 35, 0, -10, -2, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^16 - 2*x^15 - 10*x^14 + 35*x^12 + 114*x^11 - 178*x^10 + 580*x^9 + 115*x^8 - 420*x^7 - 2868*x^6 - 9414*x^5 - 13995*x^4 - 16740*x^3 - 18090*x^2 - 3078*x + 4941)
 
gp: K = bnfinit(x^16 - 2*x^15 - 10*x^14 + 35*x^12 + 114*x^11 - 178*x^10 + 580*x^9 + 115*x^8 - 420*x^7 - 2868*x^6 - 9414*x^5 - 13995*x^4 - 16740*x^3 - 18090*x^2 - 3078*x + 4941, 1)
 

Normalized defining polynomial

\( x^{16} - 2 x^{15} - 10 x^{14} + 35 x^{12} + 114 x^{11} - 178 x^{10} + 580 x^{9} + 115 x^{8} - 420 x^{7} - 2868 x^{6} - 9414 x^{5} - 13995 x^{4} - 16740 x^{3} - 18090 x^{2} - 3078 x + 4941 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $16$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[4, 6]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(3658203648000000000000000=2^{24}\cdot 3^{10}\cdot 5^{15}\cdot 11^{2}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $34.29$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $2, 3, 5, 11$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{3} a^{8} - \frac{1}{3} a^{7} + \frac{1}{3} a^{5} - \frac{1}{3} a^{3} + \frac{1}{3} a^{2}$, $\frac{1}{3} a^{9} - \frac{1}{3} a^{7} + \frac{1}{3} a^{6} + \frac{1}{3} a^{5} - \frac{1}{3} a^{4} + \frac{1}{3} a^{2}$, $\frac{1}{3} a^{10} + \frac{1}{3} a^{6} + \frac{1}{3} a^{2}$, $\frac{1}{3} a^{11} + \frac{1}{3} a^{7} + \frac{1}{3} a^{3}$, $\frac{1}{9} a^{12} + \frac{1}{9} a^{11} - \frac{1}{9} a^{10} - \frac{1}{9} a^{8} + \frac{2}{9} a^{6} + \frac{4}{9} a^{5} - \frac{2}{9} a^{4} - \frac{1}{3} a^{3} + \frac{1}{3} a^{2}$, $\frac{1}{9} a^{13} + \frac{1}{9} a^{11} + \frac{1}{9} a^{10} - \frac{1}{9} a^{9} + \frac{1}{9} a^{8} - \frac{4}{9} a^{7} + \frac{2}{9} a^{6} + \frac{1}{3} a^{5} - \frac{1}{9} a^{4} - \frac{1}{3} a^{2}$, $\frac{1}{297} a^{14} + \frac{7}{297} a^{13} + \frac{8}{297} a^{12} - \frac{5}{33} a^{11} - \frac{37}{297} a^{10} + \frac{8}{99} a^{9} + \frac{20}{297} a^{8} + \frac{76}{297} a^{7} - \frac{2}{297} a^{6} + \frac{34}{99} a^{5} - \frac{26}{99} a^{4} - \frac{2}{11} a^{3} - \frac{3}{11} a^{2} + \frac{4}{11} a - \frac{4}{11}$, $\frac{1}{989272958762888887633752393} a^{15} + \frac{1140650613091000584855272}{989272958762888887633752393} a^{14} - \frac{15464413459443643432117450}{329757652920962962544584131} a^{13} + \frac{28573696559015136317935691}{989272958762888887633752393} a^{12} + \frac{45059838357945090363137522}{989272958762888887633752393} a^{11} + \frac{117684097026338152414712678}{989272958762888887633752393} a^{10} - \frac{126368616083824411468059661}{989272958762888887633752393} a^{9} - \frac{4927761827561302676767043}{29977968447360269322234921} a^{8} + \frac{428136706238059455114261392}{989272958762888887633752393} a^{7} - \frac{153172422246040107873207692}{989272958762888887633752393} a^{6} + \frac{9365997163798187694363752}{36639739213440329171620459} a^{5} + \frac{26403057044567812717556428}{109919217640320987514861377} a^{4} - \frac{6517125823528453270009391}{36639739213440329171620459} a^{3} + \frac{110027915410818386269651}{3330885383040029924692769} a^{2} - \frac{799183696452031266038702}{36639739213440329171620459} a + \frac{14290499876827409150739430}{36639739213440329171620459}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

$C_{2}$, which has order $2$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $9$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 644308.304262 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

16T1584:

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A solvable group of order 4096
The 73 conjugacy class representatives for t16n1584 are not computed
Character table for t16n1584 is not computed

Intermediate fields

\(\Q(\sqrt{5}) \), \(\Q(\zeta_{15})^+\), 8.6.1620000000.2

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Degree 16 siblings: data not computed
Degree 32 siblings: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type R R R ${\href{/LocalNumberField/7.8.0.1}{8} }{,}\,{\href{/LocalNumberField/7.4.0.1}{4} }^{2}$ R $16$ $16$ ${\href{/LocalNumberField/19.8.0.1}{8} }{,}\,{\href{/LocalNumberField/19.4.0.1}{4} }{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{2}$ ${\href{/LocalNumberField/23.8.0.1}{8} }{,}\,{\href{/LocalNumberField/23.4.0.1}{4} }^{2}$ ${\href{/LocalNumberField/29.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{4}$ ${\href{/LocalNumberField/31.2.0.1}{2} }^{8}$ $16$ ${\href{/LocalNumberField/41.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/43.8.0.1}{8} }{,}\,{\href{/LocalNumberField/43.4.0.1}{4} }^{2}$ ${\href{/LocalNumberField/47.8.0.1}{8} }{,}\,{\href{/LocalNumberField/47.4.0.1}{4} }^{2}$ $16$ ${\href{/LocalNumberField/59.4.0.1}{4} }{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{5}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{2}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
2Data not computed
$3$3.4.2.2$x^{4} - 3 x^{2} + 18$$2$$2$$2$$C_4$$[\ ]_{2}^{2}$
3.4.2.2$x^{4} - 3 x^{2} + 18$$2$$2$$2$$C_4$$[\ ]_{2}^{2}$
3.8.6.3$x^{8} - 3 x^{4} + 18$$4$$2$$6$$C_8:C_2$$[\ ]_{4}^{4}$
5Data not computed
$11$11.4.0.1$x^{4} - x + 2$$1$$4$$0$$C_4$$[\ ]^{4}$
11.4.2.1$x^{4} + 143 x^{2} + 5929$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
11.8.0.1$x^{8} + x^{2} - 2 x + 6$$1$$8$$0$$C_8$$[\ ]^{8}$