Normalized defining polynomial
\( x^{16} - 7 x^{15} + 25 x^{14} - 58 x^{13} + 74 x^{12} + 30 x^{11} - 432 x^{10} + 1288 x^{9} - 2608 x^{8} + 4186 x^{7} - 5678 x^{6} + 6826 x^{5} - 7289 x^{4} + 6535 x^{3} - 4385 x^{2} + 1912 x - 404 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[4, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(36555024820228837034401=17^{12}\cdot 89^{4}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $25.71$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $17, 89$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{2} a^{4} - \frac{1}{2} a$, $\frac{1}{2} a^{5} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{6} - \frac{1}{2} a^{3}$, $\frac{1}{4} a^{7} - \frac{1}{2} a^{3} - \frac{1}{4} a - \frac{1}{2}$, $\frac{1}{8} a^{8} - \frac{1}{8} a^{7} - \frac{1}{4} a^{5} + \frac{1}{4} a^{3} - \frac{3}{8} a^{2} + \frac{1}{8} a + \frac{1}{4}$, $\frac{1}{8} a^{9} - \frac{1}{8} a^{7} - \frac{1}{4} a^{6} - \frac{1}{4} a^{5} - \frac{1}{4} a^{4} - \frac{1}{8} a^{3} - \frac{1}{4} a^{2} - \frac{1}{8} a + \frac{1}{4}$, $\frac{1}{8} a^{10} - \frac{1}{8} a^{7} - \frac{1}{4} a^{6} - \frac{1}{8} a^{4} - \frac{1}{2} a^{3} + \frac{1}{8} a - \frac{1}{4}$, $\frac{1}{32} a^{11} - \frac{1}{16} a^{10} - \frac{1}{16} a^{9} + \frac{1}{32} a^{8} + \frac{1}{8} a^{6} - \frac{1}{32} a^{5} + \frac{3}{16} a^{4} - \frac{7}{16} a^{3} + \frac{15}{32} a^{2} + \frac{1}{8} a + \frac{3}{8}$, $\frac{1}{32} a^{12} - \frac{1}{16} a^{10} + \frac{1}{32} a^{9} - \frac{1}{16} a^{8} + \frac{7}{32} a^{6} + \frac{1}{8} a^{5} + \frac{1}{16} a^{4} + \frac{7}{32} a^{3} + \frac{3}{16} a^{2} - \frac{1}{2}$, $\frac{1}{64} a^{13} - \frac{1}{64} a^{12} - \frac{1}{64} a^{11} + \frac{1}{64} a^{10} + \frac{3}{64} a^{9} - \frac{1}{64} a^{8} + \frac{3}{64} a^{7} - \frac{15}{64} a^{6} - \frac{11}{64} a^{5} + \frac{11}{64} a^{4} + \frac{1}{64} a^{3} + \frac{5}{64} a^{2} + \frac{3}{8} a - \frac{7}{16}$, $\frac{1}{256} a^{14} - \frac{1}{128} a^{13} - \frac{1}{64} a^{12} - \frac{1}{64} a^{11} - \frac{5}{128} a^{10} - \frac{3}{64} a^{9} + \frac{3}{128} a^{8} - \frac{9}{128} a^{7} - \frac{1}{16} a^{6} - \frac{13}{64} a^{5} - \frac{27}{128} a^{4} + \frac{27}{64} a^{3} - \frac{31}{256} a^{2} - \frac{27}{64} a + \frac{5}{64}$, $\frac{1}{351488} a^{15} + \frac{125}{351488} a^{14} + \frac{711}{175744} a^{13} + \frac{229}{21968} a^{12} + \frac{213}{175744} a^{11} - \frac{10313}{175744} a^{10} + \frac{1857}{175744} a^{9} + \frac{2403}{43936} a^{8} - \frac{21767}{175744} a^{7} + \frac{9507}{87872} a^{6} - \frac{89}{175744} a^{5} + \frac{2649}{175744} a^{4} + \frac{140101}{351488} a^{3} - \frac{118013}{351488} a^{2} - \frac{643}{2746} a + \frac{31819}{87872}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 539030.426161 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\wr C_4$ (as 16T157):
| A solvable group of order 64 |
| The 13 conjugacy class representatives for $C_2\wr C_4$ |
| Character table for $C_2\wr C_4$ |
Intermediate fields
| \(\Q(\sqrt{17}) \), 4.4.4913.1, 8.4.191193684049.1, 8.4.2148243641.1 x2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 8 siblings: | data not computed |
| Degree 16 siblings: | data not computed |
| Degree 32 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/5.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/13.2.0.1}{2} }^{8}$ | R | ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/31.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/41.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $17$ | 17.8.6.1 | $x^{8} - 119 x^{4} + 23409$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ |
| 17.8.6.1 | $x^{8} - 119 x^{4} + 23409$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ | |
| 89 | Data not computed | ||||||