Properties

Label 16.4.36343571072...3125.1
Degree $16$
Signature $[4, 6]$
Discriminant $3^{12}\cdot 5^{15}\cdot 22409$
Root discriminant $19.28$
Ramified primes $3, 5, 22409$
Class number $1$
Class group Trivial
Galois group 16T1604

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-59, -133, 15, 25, -195, -39, 67, -50, -75, 35, 7, -21, 0, 5, 0, -2, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^16 - 2*x^15 + 5*x^13 - 21*x^11 + 7*x^10 + 35*x^9 - 75*x^8 - 50*x^7 + 67*x^6 - 39*x^5 - 195*x^4 + 25*x^3 + 15*x^2 - 133*x - 59)
 
gp: K = bnfinit(x^16 - 2*x^15 + 5*x^13 - 21*x^11 + 7*x^10 + 35*x^9 - 75*x^8 - 50*x^7 + 67*x^6 - 39*x^5 - 195*x^4 + 25*x^3 + 15*x^2 - 133*x - 59, 1)
 

Normalized defining polynomial

\( x^{16} - 2 x^{15} + 5 x^{13} - 21 x^{11} + 7 x^{10} + 35 x^{9} - 75 x^{8} - 50 x^{7} + 67 x^{6} - 39 x^{5} - 195 x^{4} + 25 x^{3} + 15 x^{2} - 133 x - 59 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $16$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[4, 6]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(363435710723876953125=3^{12}\cdot 5^{15}\cdot 22409\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $19.28$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $3, 5, 22409$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $\frac{1}{106945763579} a^{15} + \frac{16445619223}{106945763579} a^{14} - \frac{42835667214}{106945763579} a^{13} + \frac{47495553198}{106945763579} a^{12} - \frac{3010627186}{106945763579} a^{11} + \frac{23195579664}{106945763579} a^{10} - \frac{50335888842}{106945763579} a^{9} - \frac{6354791967}{106945763579} a^{8} + \frac{40847032149}{106945763579} a^{7} + \frac{21888731974}{106945763579} a^{6} + \frac{28520421543}{106945763579} a^{5} - \frac{23736576759}{106945763579} a^{4} + \frac{1690432437}{106945763579} a^{3} + \frac{24139312782}{106945763579} a^{2} - \frac{44937265540}{106945763579} a + \frac{28305574971}{106945763579}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

Trivial group, which has order $1$

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $9$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 11194.1917036 \)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

16T1604:

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A solvable group of order 4096
The 73 conjugacy class representatives for t16n1604 are not computed
Character table for t16n1604 is not computed

Intermediate fields

\(\Q(\sqrt{5}) \), \(\Q(\zeta_{15})^+\), 8.4.56953125.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Degree 16 siblings: data not computed
Degree 32 siblings: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type $16$ R R $16$ ${\href{/LocalNumberField/11.8.0.1}{8} }{,}\,{\href{/LocalNumberField/11.4.0.1}{4} }^{2}$ $16$ ${\href{/LocalNumberField/17.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/19.8.0.1}{8} }{,}\,{\href{/LocalNumberField/19.4.0.1}{4} }^{2}$ ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/29.2.0.1}{2} }^{5}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{6}$ ${\href{/LocalNumberField/31.4.0.1}{4} }{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{6}$ ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/41.8.0.1}{8} }^{2}$ $16$ $16$ $16$ ${\href{/LocalNumberField/59.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{8}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$3$3.8.6.3$x^{8} - 3 x^{4} + 18$$4$$2$$6$$C_8:C_2$$[\ ]_{4}^{4}$
3.8.6.3$x^{8} - 3 x^{4} + 18$$4$$2$$6$$C_8:C_2$$[\ ]_{4}^{4}$
5Data not computed
22409Data not computed