Normalized defining polynomial
\( x^{16} - 8 x^{14} - 25 x^{13} + 19 x^{12} + 80 x^{11} + 98 x^{10} - 145 x^{9} - 364 x^{8} - 140 x^{7} + 380 x^{6} - 755 x^{5} + 180 x^{4} + 825 x^{3} - 200 x^{2} - 200 x + 25 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[4, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(35847274805742431640625=5^{12}\cdot 59^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $25.68$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $5, 59$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{30} a^{12} + \frac{1}{6} a^{11} - \frac{13}{30} a^{10} + \frac{7}{15} a^{8} + \frac{1}{6} a^{7} + \frac{4}{15} a^{6} - \frac{1}{2} a^{5} + \frac{1}{30} a^{4} - \frac{1}{3} a^{3} - \frac{1}{3} a^{2} - \frac{1}{3} a + \frac{1}{6}$, $\frac{1}{30} a^{13} - \frac{4}{15} a^{11} + \frac{1}{6} a^{10} + \frac{7}{15} a^{9} - \frac{1}{6} a^{8} + \frac{13}{30} a^{7} + \frac{1}{6} a^{6} - \frac{7}{15} a^{5} - \frac{1}{2} a^{4} + \frac{1}{3} a^{3} + \frac{1}{3} a^{2} - \frac{1}{6} a + \frac{1}{6}$, $\frac{1}{30} a^{14} - \frac{1}{2} a^{11} - \frac{1}{6} a^{9} + \frac{1}{6} a^{8} - \frac{1}{2} a^{7} - \frac{1}{3} a^{6} - \frac{1}{2} a^{5} - \frac{2}{5} a^{4} - \frac{1}{3} a^{3} + \frac{1}{6} a^{2} - \frac{1}{2} a + \frac{1}{3}$, $\frac{1}{60282064962010395930} a^{15} - \frac{79018608795768049}{30141032481005197965} a^{14} - \frac{500595917580923057}{30141032481005197965} a^{13} + \frac{557715066029582713}{60282064962010395930} a^{12} - \frac{270374259983833099}{30141032481005197965} a^{11} - \frac{28794742774944744329}{60282064962010395930} a^{10} - \frac{7979726487079956731}{60282064962010395930} a^{9} + \frac{4306924745633552949}{20094021654003465310} a^{8} - \frac{21402517188891577}{10047010827001732655} a^{7} + \frac{3351559144345112339}{60282064962010395930} a^{6} + \frac{3714202839393773737}{30141032481005197965} a^{5} - \frac{2531441533509564386}{10047010827001732655} a^{4} - \frac{3287639192210688095}{12056412992402079186} a^{3} - \frac{1592611331642495819}{4018804330800693062} a^{2} + \frac{2469088738272821042}{6028206496201039593} a + \frac{2986304652835913908}{6028206496201039593}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 60268.4261403 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 32 |
| The 14 conjugacy class representatives for $D_4:C_4$ |
| Character table for $D_4:C_4$ |
Intermediate fields
| \(\Q(\sqrt{5}) \), 4.2.1475.1, 4.4.435125.1, 4.2.7375.1, 8.2.3209046875.2, 8.2.128361875.1, 8.4.189333765625.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
| Degree 16 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/3.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/11.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/13.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/47.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ | R |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $5$ | 5.8.6.1 | $x^{8} - 5 x^{4} + 400$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ |
| 5.8.6.1 | $x^{8} - 5 x^{4} + 400$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ | |
| 59 | Data not computed | ||||||