Normalized defining polynomial
\( x^{16} - 3 x^{15} + 8 x^{14} - 41 x^{13} + 90 x^{12} - 206 x^{11} + 538 x^{10} - 718 x^{9} + 1246 x^{8} - 1560 x^{7} - 1520 x^{6} + 5230 x^{5} - 11770 x^{4} + 21665 x^{3} - 17560 x^{2} + 5220 x - 495 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[4, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(3544928919759039306640625=5^{14}\cdot 41^{5}\cdot 2239^{2}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $34.23$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $5, 41, 2239$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{3} a^{6} + \frac{1}{3} a^{5} + \frac{1}{3} a^{2} + \frac{1}{3} a$, $\frac{1}{3} a^{7} - \frac{1}{3} a^{5} + \frac{1}{3} a^{3} - \frac{1}{3} a$, $\frac{1}{3} a^{8} + \frac{1}{3} a^{5} + \frac{1}{3} a^{4} + \frac{1}{3} a$, $\frac{1}{3} a^{9} - \frac{1}{3} a$, $\frac{1}{9} a^{10} - \frac{1}{9} a^{8} - \frac{1}{9} a^{7} - \frac{1}{3} a^{5} + \frac{2}{9} a^{4} - \frac{1}{9} a^{3} + \frac{2}{9} a^{2}$, $\frac{1}{135} a^{11} + \frac{7}{135} a^{10} - \frac{7}{135} a^{9} + \frac{4}{135} a^{8} - \frac{2}{27} a^{7} - \frac{1}{9} a^{6} + \frac{4}{27} a^{5} - \frac{4}{27} a^{4} - \frac{7}{27} a^{3} + \frac{13}{27} a^{2} - \frac{1}{3} a + \frac{1}{3}$, $\frac{1}{405} a^{12} - \frac{1}{405} a^{11} - \frac{2}{45} a^{10} - \frac{2}{27} a^{9} + \frac{1}{135} a^{8} - \frac{5}{81} a^{7} - \frac{8}{81} a^{6} - \frac{2}{9} a^{5} - \frac{20}{81} a^{4} - \frac{10}{27} a^{3} + \frac{31}{81} a^{2} - \frac{2}{9} a + \frac{4}{9}$, $\frac{1}{1215} a^{13} - \frac{1}{1215} a^{11} - \frac{19}{405} a^{10} - \frac{17}{135} a^{9} + \frac{37}{243} a^{8} - \frac{22}{243} a^{7} + \frac{1}{243} a^{6} - \frac{47}{243} a^{5} - \frac{95}{243} a^{4} - \frac{98}{243} a^{3} + \frac{112}{243} a^{2} + \frac{11}{27} a - \frac{5}{27}$, $\frac{1}{18225} a^{14} + \frac{4}{18225} a^{13} - \frac{2}{3645} a^{12} - \frac{1}{729} a^{11} + \frac{5}{243} a^{10} + \frac{869}{18225} a^{9} - \frac{56}{2025} a^{8} - \frac{113}{1215} a^{7} - \frac{376}{3645} a^{6} - \frac{359}{729} a^{5} + \frac{1052}{3645} a^{4} + \frac{349}{729} a^{3} + \frac{214}{3645} a^{2} + \frac{43}{135} a - \frac{56}{405}$, $\frac{1}{933653427525} a^{15} - \frac{741688}{133379061075} a^{14} - \frac{60812}{957593259} a^{13} - \frac{37374262}{186730685505} a^{12} - \frac{513040124}{186730685505} a^{11} + \frac{2294417228}{71819494425} a^{10} - \frac{151039767874}{933653427525} a^{9} - \frac{6501690737}{62243561835} a^{8} + \frac{871870418}{14363898885} a^{7} + \frac{247136165}{2872779777} a^{6} - \frac{36547501073}{186730685505} a^{5} + \frac{3154927073}{37346137101} a^{4} - \frac{27274997572}{62243561835} a^{3} - \frac{16766241374}{186730685505} a^{2} - \frac{9278230301}{20747853945} a + \frac{119169194}{4149570789}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 2287279.97947 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 16384 |
| The 130 conjugacy class representatives for t16n1782 are not computed |
| Character table for t16n1782 is not computed |
Intermediate fields
| \(\Q(\sqrt{5}) \), 4.4.5125.1, 8.6.294043671875.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/3.4.0.1}{4} }{,}\,{\href{/LocalNumberField/3.2.0.1}{2} }^{6}$ | R | ${\href{/LocalNumberField/7.8.0.1}{8} }{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/11.8.0.1}{8} }{,}\,{\href{/LocalNumberField/11.4.0.1}{4} }{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/17.8.0.1}{8} }{,}\,{\href{/LocalNumberField/17.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/31.8.0.1}{8} }{,}\,{\href{/LocalNumberField/31.4.0.1}{4} }{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/47.8.0.1}{8} }{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $5$ | 5.8.7.2 | $x^{8} - 20$ | $8$ | $1$ | $7$ | $C_8:C_2$ | $[\ ]_{8}^{2}$ |
| 5.8.7.2 | $x^{8} - 20$ | $8$ | $1$ | $7$ | $C_8:C_2$ | $[\ ]_{8}^{2}$ | |
| $41$ | 41.2.0.1 | $x^{2} - x + 12$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 41.2.0.1 | $x^{2} - x + 12$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 41.4.0.1 | $x^{4} - x + 17$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 41.4.3.4 | $x^{4} + 8856$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 41.4.2.1 | $x^{4} + 943 x^{2} + 242064$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 2239 | Data not computed | ||||||