Normalized defining polynomial
\( x^{16} - 4 x^{15} - 3 x^{14} + 117 x^{13} - 861 x^{12} + 8121 x^{11} - 15475 x^{10} + 59261 x^{9} + 129601 x^{8} - 1374433 x^{7} + 4112201 x^{6} - 16201717 x^{5} + 12050174 x^{4} - 22671797 x^{3} - 20716338 x^{2} + 14876208 x + 167431328 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[4, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(3465901403903727030665446298911801=11^{6}\cdot 89^{14}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $124.81$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $11, 89$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{2} a^{4} - \frac{1}{2} a$, $\frac{1}{2} a^{5} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{6} - \frac{1}{2} a^{3}$, $\frac{1}{2} a^{7} - \frac{1}{2} a$, $\frac{1}{4} a^{8} - \frac{1}{4} a^{2}$, $\frac{1}{4} a^{9} - \frac{1}{4} a^{3}$, $\frac{1}{4} a^{10} - \frac{1}{4} a^{4}$, $\frac{1}{16} a^{11} + \frac{1}{16} a^{8} + \frac{1}{8} a^{7} - \frac{1}{4} a^{6} + \frac{3}{16} a^{5} - \frac{1}{4} a^{4} - \frac{1}{4} a^{3} - \frac{5}{16} a^{2} + \frac{1}{8} a - \frac{1}{2}$, $\frac{1}{16} a^{12} + \frac{1}{16} a^{9} - \frac{1}{8} a^{8} - \frac{1}{4} a^{7} + \frac{3}{16} a^{6} - \frac{1}{4} a^{5} - \frac{1}{4} a^{4} - \frac{5}{16} a^{3} + \frac{3}{8} a^{2} - \frac{1}{2} a$, $\frac{1}{176} a^{13} + \frac{5}{176} a^{12} - \frac{3}{176} a^{11} + \frac{1}{176} a^{10} + \frac{7}{176} a^{9} - \frac{13}{176} a^{8} + \frac{25}{176} a^{7} + \frac{39}{176} a^{6} + \frac{31}{176} a^{5} + \frac{27}{176} a^{4} + \frac{21}{176} a^{3} - \frac{15}{176} a^{2} - \frac{1}{8} a + \frac{9}{22}$, $\frac{1}{704} a^{14} + \frac{1}{704} a^{13} + \frac{21}{704} a^{12} + \frac{13}{704} a^{11} - \frac{41}{704} a^{10} - \frac{41}{704} a^{9} + \frac{3}{64} a^{8} - \frac{61}{704} a^{7} + \frac{95}{704} a^{6} - \frac{97}{704} a^{5} - \frac{131}{704} a^{4} - \frac{17}{64} a^{3} + \frac{129}{352} a^{2} + \frac{31}{88} a + \frac{1}{11}$, $\frac{1}{63211058514102373385277225599594454770120311688208448} a^{15} + \frac{22715327948154630684014079798407157809317649427179}{63211058514102373385277225599594454770120311688208448} a^{14} + \frac{79023823543270390144750204699289758217053998037663}{63211058514102373385277225599594454770120311688208448} a^{13} + \frac{457219995222169003944256093225936433159543865989319}{63211058514102373385277225599594454770120311688208448} a^{12} - \frac{1576652431957725193238639294059681526805882017311015}{63211058514102373385277225599594454770120311688208448} a^{11} + \frac{7638414605080380977338909748693900586037977295720301}{63211058514102373385277225599594454770120311688208448} a^{10} - \frac{1601503785714446086103557511552786061751989334495265}{63211058514102373385277225599594454770120311688208448} a^{9} + \frac{2957974232924957270143332034304271186591703974693357}{63211058514102373385277225599594454770120311688208448} a^{8} - \frac{3151040843806465912076930457589046705314782723054211}{63211058514102373385277225599594454770120311688208448} a^{7} - \frac{7976547843459600226825670928175603685943796943770291}{63211058514102373385277225599594454770120311688208448} a^{6} + \frac{941485718847544740199516598560120074327603677907251}{63211058514102373385277225599594454770120311688208448} a^{5} + \frac{1255064577006599817555623077501701903022225040459511}{63211058514102373385277225599594454770120311688208448} a^{4} + \frac{697133771022970304782651720663804694598685940490975}{15802764628525593346319306399898613692530077922052112} a^{3} + \frac{7456620841731155236874465859807397475662004136678515}{15802764628525593346319306399898613692530077922052112} a^{2} - \frac{779687330485166916185878445458638533325858286367557}{3950691157131398336579826599974653423132519480513028} a - \frac{256423069206139364878841530306528032562898575285523}{987672789282849584144956649993663355783129870128257}$
Class group and class number
$C_{2}$, which has order $2$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 1832140294650 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^3.C_4$ (as 16T41):
| A solvable group of order 32 |
| The 11 conjugacy class representatives for $C_2^3.C_4$ |
| Character table for $C_2^3.C_4$ |
Intermediate fields
| \(\Q(\sqrt{89}) \), 4.2.87131.1, 4.4.704969.1, 4.2.7754659.1, 8.4.5351991522359009.3 x2, 8.4.60134736206281.2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
| Degree 8 siblings: | data not computed |
| Degree 16 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/2.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/5.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}$ | R | ${\href{/LocalNumberField/13.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/17.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/19.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/31.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/41.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/59.8.0.1}{8} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $11$ | $\Q_{11}$ | $x + 3$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{11}$ | $x + 3$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{11}$ | $x + 3$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{11}$ | $x + 3$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 11.2.1.2 | $x^{2} + 33$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 11.2.1.2 | $x^{2} + 33$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 11.2.1.2 | $x^{2} + 33$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 11.2.1.2 | $x^{2} + 33$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 11.2.1.2 | $x^{2} + 33$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 11.2.1.2 | $x^{2} + 33$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| $89$ | 89.8.7.3 | $x^{8} - 7209$ | $8$ | $1$ | $7$ | $C_8$ | $[\ ]_{8}$ |
| 89.8.7.3 | $x^{8} - 7209$ | $8$ | $1$ | $7$ | $C_8$ | $[\ ]_{8}$ |