Normalized defining polynomial
\( x^{16} - 5 x^{15} + 10 x^{14} - 19 x^{13} + 30 x^{12} - 199 x^{11} + 503 x^{10} - 773 x^{9} - 657 x^{8} + 3402 x^{7} - 5195 x^{6} + 9313 x^{5} - 7926 x^{4} + 7472 x^{3} - 2560 x^{2} + 2145 x + 1021 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[4, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(3393001956715501807791409=17^{14}\cdot 67^{4}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $34.13$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $17, 67$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $\frac{1}{13} a^{14} - \frac{1}{13} a^{13} - \frac{4}{13} a^{12} + \frac{1}{13} a^{11} - \frac{4}{13} a^{10} - \frac{4}{13} a^{9} - \frac{6}{13} a^{8} - \frac{3}{13} a^{7} + \frac{2}{13} a^{6} - \frac{5}{13} a^{5} + \frac{4}{13} a^{4} + \frac{6}{13} a^{3} + \frac{1}{13} a^{2} + \frac{6}{13} a + \frac{2}{13}$, $\frac{1}{18464745612758539507893776698987} a^{15} + \frac{648290566238181769026597567018}{18464745612758539507893776698987} a^{14} + \frac{4235450101793973823328784526485}{18464745612758539507893776698987} a^{13} - \frac{3333562884061217229079575592179}{18464745612758539507893776698987} a^{12} - \frac{8491786087652573640605412028301}{18464745612758539507893776698987} a^{11} - \frac{4384131034781048180065693562581}{18464745612758539507893776698987} a^{10} + \frac{1177480785383230808256997371003}{18464745612758539507893776698987} a^{9} - \frac{8541685735275388111613703149938}{18464745612758539507893776698987} a^{8} - \frac{1746521379308146148010386690315}{18464745612758539507893776698987} a^{7} - \frac{5824089599936383622947350311060}{18464745612758539507893776698987} a^{6} - \frac{6433028937882614656243830943116}{18464745612758539507893776698987} a^{5} - \frac{7387342852949820912378839883084}{18464745612758539507893776698987} a^{4} - \frac{251446193303792571133919484934}{18464745612758539507893776698987} a^{3} - \frac{1385171215612730081480154762244}{18464745612758539507893776698987} a^{2} + \frac{8186219482711401632986927424691}{18464745612758539507893776698987} a - \frac{6425811194658825708493597958460}{18464745612758539507893776698987}$
Class group and class number
$C_{2}$, which has order $2$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 295231.718761 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 1024 |
| The 40 conjugacy class representatives for t16n1194 |
| Character table for t16n1194 is not computed |
Intermediate fields
| \(\Q(\sqrt{17}) \), 4.4.4913.1, \(\Q(\zeta_{17})^+\) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/5.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/11.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{4}$ | R | ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/31.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/41.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $17$ | 17.8.7.3 | $x^{8} - 17$ | $8$ | $1$ | $7$ | $C_8$ | $[\ ]_{8}$ |
| 17.8.7.3 | $x^{8} - 17$ | $8$ | $1$ | $7$ | $C_8$ | $[\ ]_{8}$ | |
| 67 | Data not computed | ||||||