Properties

Label 16.4.33930019567...1409.1
Degree $16$
Signature $[4, 6]$
Discriminant $17^{14}\cdot 67^{4}$
Root discriminant $34.13$
Ramified primes $17, 67$
Class number $2$ (GRH)
Class group $[2]$ (GRH)
Galois group 16T1194

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-2789, -1713, 3779, -7090, 4456, 491, -4672, 5556, -4741, 2461, -1213, 300, -60, -11, 11, -3, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^16 - 3*x^15 + 11*x^14 - 11*x^13 - 60*x^12 + 300*x^11 - 1213*x^10 + 2461*x^9 - 4741*x^8 + 5556*x^7 - 4672*x^6 + 491*x^5 + 4456*x^4 - 7090*x^3 + 3779*x^2 - 1713*x - 2789)
 
gp: K = bnfinit(x^16 - 3*x^15 + 11*x^14 - 11*x^13 - 60*x^12 + 300*x^11 - 1213*x^10 + 2461*x^9 - 4741*x^8 + 5556*x^7 - 4672*x^6 + 491*x^5 + 4456*x^4 - 7090*x^3 + 3779*x^2 - 1713*x - 2789, 1)
 

Normalized defining polynomial

\( x^{16} - 3 x^{15} + 11 x^{14} - 11 x^{13} - 60 x^{12} + 300 x^{11} - 1213 x^{10} + 2461 x^{9} - 4741 x^{8} + 5556 x^{7} - 4672 x^{6} + 491 x^{5} + 4456 x^{4} - 7090 x^{3} + 3779 x^{2} - 1713 x - 2789 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $16$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[4, 6]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(3393001956715501807791409=17^{14}\cdot 67^{4}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $34.13$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $17, 67$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $\frac{1}{221116703288407231740530012723} a^{15} + \frac{92735232479774218633109289446}{221116703288407231740530012723} a^{14} + \frac{6102978669612905714452285391}{17008977176031325518502308671} a^{13} + \frac{71621803368315984387993722231}{221116703288407231740530012723} a^{12} - \frac{15080660094345515237462803483}{221116703288407231740530012723} a^{11} - \frac{6081456046304195417477403940}{17008977176031325518502308671} a^{10} + \frac{29294772969509718734057198408}{221116703288407231740530012723} a^{9} - \frac{93539824135998475969150779524}{221116703288407231740530012723} a^{8} + \frac{77104690417617924235528204827}{221116703288407231740530012723} a^{7} - \frac{36454624953417821662255057564}{221116703288407231740530012723} a^{6} - \frac{8517348840448754098102962203}{221116703288407231740530012723} a^{5} - \frac{97193285002600788050431867347}{221116703288407231740530012723} a^{4} + \frac{89993458121188302123726326164}{221116703288407231740530012723} a^{3} + \frac{44524609364677225832146667912}{221116703288407231740530012723} a^{2} - \frac{64703491949810481989436779523}{221116703288407231740530012723} a + \frac{35271108130569908932882999005}{221116703288407231740530012723}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

$C_{2}$, which has order $2$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $9$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 296551.660021 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

16T1194:

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A solvable group of order 1024
The 40 conjugacy class representatives for t16n1194
Character table for t16n1194 is not computed

Intermediate fields

\(\Q(\sqrt{17}) \), 4.4.4913.1, \(\Q(\zeta_{17})^+\)

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Degree 16 siblings: data not computed
Degree 32 siblings: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type ${\href{/LocalNumberField/2.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/5.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/11.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/13.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{4}$ R ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/29.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/31.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/41.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/47.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$17$17.8.7.3$x^{8} - 17$$8$$1$$7$$C_8$$[\ ]_{8}$
17.8.7.3$x^{8} - 17$$8$$1$$7$$C_8$$[\ ]_{8}$
67Data not computed