Properties

Label 16.4.33889976320...0000.1
Degree $16$
Signature $[4, 6]$
Discriminant $2^{40}\cdot 5^{15}\cdot 101$
Root discriminant $34.13$
Ramified primes $2, 5, 101$
Class number $1$ (GRH)
Class group Trivial (GRH)
Galois group 16T1604

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-199, 1296, -3700, 5160, 140, -13532, 23628, -21140, 12825, -6420, 2808, -1012, 330, -100, 20, -4, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^16 - 4*x^15 + 20*x^14 - 100*x^13 + 330*x^12 - 1012*x^11 + 2808*x^10 - 6420*x^9 + 12825*x^8 - 21140*x^7 + 23628*x^6 - 13532*x^5 + 140*x^4 + 5160*x^3 - 3700*x^2 + 1296*x - 199)
 
gp: K = bnfinit(x^16 - 4*x^15 + 20*x^14 - 100*x^13 + 330*x^12 - 1012*x^11 + 2808*x^10 - 6420*x^9 + 12825*x^8 - 21140*x^7 + 23628*x^6 - 13532*x^5 + 140*x^4 + 5160*x^3 - 3700*x^2 + 1296*x - 199, 1)
 

Normalized defining polynomial

\( x^{16} - 4 x^{15} + 20 x^{14} - 100 x^{13} + 330 x^{12} - 1012 x^{11} + 2808 x^{10} - 6420 x^{9} + 12825 x^{8} - 21140 x^{7} + 23628 x^{6} - 13532 x^{5} + 140 x^{4} + 5160 x^{3} - 3700 x^{2} + 1296 x - 199 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $16$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[4, 6]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(3388997632000000000000000=2^{40}\cdot 5^{15}\cdot 101\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $34.13$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $2, 5, 101$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $\frac{1}{146427840922593498962418799} a^{15} + \frac{65487719623183483477238694}{146427840922593498962418799} a^{14} + \frac{44847696795033203301517270}{146427840922593498962418799} a^{13} + \frac{47977034001141146651344176}{146427840922593498962418799} a^{12} + \frac{5187355266833392312634343}{146427840922593498962418799} a^{11} + \frac{20377869002129443554774588}{146427840922593498962418799} a^{10} - \frac{44816140478906271556820416}{146427840922593498962418799} a^{9} + \frac{40183191522508695865640998}{146427840922593498962418799} a^{8} + \frac{68671631574509492428967624}{146427840922593498962418799} a^{7} + \frac{30219083618652838297487823}{146427840922593498962418799} a^{6} + \frac{55956004438930403334085634}{146427840922593498962418799} a^{5} - \frac{49389869878131721954929783}{146427840922593498962418799} a^{4} + \frac{15163644449396643202097677}{146427840922593498962418799} a^{3} - \frac{8697813464607307295170925}{146427840922593498962418799} a^{2} + \frac{19674208841608208393078946}{146427840922593498962418799} a - \frac{47715837310015420949220932}{146427840922593498962418799}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

Trivial group, which has order $1$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $9$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 910561.554212 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

16T1604:

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A solvable group of order 4096
The 73 conjugacy class representatives for t16n1604 are not computed
Character table for t16n1604 is not computed

Intermediate fields

\(\Q(\sqrt{5}) \), \(\Q(\zeta_{20})^+\), 8.8.5120000000.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Degree 16 siblings: data not computed
Degree 32 siblings: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type R ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ R ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/11.8.0.1}{8} }{,}\,{\href{/LocalNumberField/11.4.0.1}{4} }^{2}$ $16$ $16$ ${\href{/LocalNumberField/19.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{4}$ $16$ ${\href{/LocalNumberField/29.8.0.1}{8} }{,}\,{\href{/LocalNumberField/29.4.0.1}{4} }^{2}$ ${\href{/LocalNumberField/31.8.0.1}{8} }^{2}$ $16$ ${\href{/LocalNumberField/41.4.0.1}{4} }{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{6}$ $16$ $16$ ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/59.4.0.1}{4} }{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{4}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
2Data not computed
5Data not computed
$101$$\Q_{101}$$x + 2$$1$$1$$0$Trivial$[\ ]$
$\Q_{101}$$x + 2$$1$$1$$0$Trivial$[\ ]$
$\Q_{101}$$x + 2$$1$$1$$0$Trivial$[\ ]$
$\Q_{101}$$x + 2$$1$$1$$0$Trivial$[\ ]$
101.2.0.1$x^{2} - x + 3$$1$$2$$0$$C_2$$[\ ]^{2}$
101.2.1.2$x^{2} + 202$$2$$1$$1$$C_2$$[\ ]_{2}$
101.4.0.1$x^{4} - x + 12$$1$$4$$0$$C_4$$[\ ]^{4}$
101.4.0.1$x^{4} - x + 12$$1$$4$$0$$C_4$$[\ ]^{4}$