Properties

Label 16.4.33662328752...4641.7
Degree $16$
Signature $[4, 6]$
Discriminant $31^{6}\cdot 41^{14}$
Root discriminant $93.42$
Ramified primes $31, 41$
Class number $8$ (GRH)
Class group $[8]$ (GRH)
Galois group $C_2^3.C_4$ (as 16T41)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-91699, 705715, -1852166, 2308085, -1988097, 1194633, -310833, -134382, 139366, -36372, -8435, 9520, -3457, 664, -49, -5, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^16 - 5*x^15 - 49*x^14 + 664*x^13 - 3457*x^12 + 9520*x^11 - 8435*x^10 - 36372*x^9 + 139366*x^8 - 134382*x^7 - 310833*x^6 + 1194633*x^5 - 1988097*x^4 + 2308085*x^3 - 1852166*x^2 + 705715*x - 91699)
 
gp: K = bnfinit(x^16 - 5*x^15 - 49*x^14 + 664*x^13 - 3457*x^12 + 9520*x^11 - 8435*x^10 - 36372*x^9 + 139366*x^8 - 134382*x^7 - 310833*x^6 + 1194633*x^5 - 1988097*x^4 + 2308085*x^3 - 1852166*x^2 + 705715*x - 91699, 1)
 

Normalized defining polynomial

\( x^{16} - 5 x^{15} - 49 x^{14} + 664 x^{13} - 3457 x^{12} + 9520 x^{11} - 8435 x^{10} - 36372 x^{9} + 139366 x^{8} - 134382 x^{7} - 310833 x^{6} + 1194633 x^{5} - 1988097 x^{4} + 2308085 x^{3} - 1852166 x^{2} + 705715 x - 91699 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $16$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[4, 6]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(33662328752972862921089838254641=31^{6}\cdot 41^{14}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $93.42$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $31, 41$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{2} a^{8} - \frac{1}{2} a^{7} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{2} a^{9} - \frac{1}{2} a^{7} - \frac{1}{2} a^{6} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2}$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{5} - \frac{1}{2}$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{6} - \frac{1}{2} a$, $\frac{1}{4} a^{12} - \frac{1}{4} a^{10} - \frac{1}{4} a^{9} - \frac{1}{4} a^{8} - \frac{1}{4} a^{7} - \frac{1}{4} a^{6} - \frac{1}{2} a^{5} - \frac{1}{4} a^{4} - \frac{1}{2} a^{2} + \frac{1}{4} a - \frac{1}{4}$, $\frac{1}{4} a^{13} - \frac{1}{4} a^{11} - \frac{1}{4} a^{10} - \frac{1}{4} a^{9} - \frac{1}{4} a^{8} - \frac{1}{4} a^{7} - \frac{1}{2} a^{6} - \frac{1}{4} a^{5} - \frac{1}{2} a^{3} + \frac{1}{4} a^{2} - \frac{1}{4} a$, $\frac{1}{4} a^{14} - \frac{1}{4} a^{11} + \frac{1}{4} a^{7} - \frac{1}{2} a^{5} - \frac{1}{4} a^{4} + \frac{1}{4} a^{3} - \frac{1}{4} a^{2} - \frac{1}{4} a + \frac{1}{4}$, $\frac{1}{3467835123638146582629076488699489096172} a^{15} - \frac{29823231953503122310026101393085485735}{866958780909536645657269122174872274043} a^{14} + \frac{32928192979891012322593281920229279319}{1733917561819073291314538244349744548086} a^{13} - \frac{246184833249786931025522719618474055373}{3467835123638146582629076488699489096172} a^{12} + \frac{109316349675501208025789357845669746063}{866958780909536645657269122174872274043} a^{11} - \frac{86380720566338716424080030351403867067}{1733917561819073291314538244349744548086} a^{10} - \frac{165247898031930815460732368284323188896}{866958780909536645657269122174872274043} a^{9} + \frac{8714263079694403769433366550322031751}{3467835123638146582629076488699489096172} a^{8} - \frac{13401560960639501891376316136256864021}{866958780909536645657269122174872274043} a^{7} - \frac{850957623352569035793295076258751451179}{1733917561819073291314538244349744548086} a^{6} - \frac{1212574564595965667825280867552726492159}{3467835123638146582629076488699489096172} a^{5} + \frac{1428930683728389473681909106612629387013}{3467835123638146582629076488699489096172} a^{4} - \frac{161778419469199333676904751655191696855}{3467835123638146582629076488699489096172} a^{3} - \frac{1178806563687518125184887592621349797789}{3467835123638146582629076488699489096172} a^{2} - \frac{1559057116605047946414722214529411314543}{3467835123638146582629076488699489096172} a + \frac{4715472938663833935035603986511538701}{16204837026346479358079796676165836898}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

$C_{8}$, which has order $8$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $9$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 503019527.53 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$C_2^3.C_4$ (as 16T41):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A solvable group of order 32
The 11 conjugacy class representatives for $C_2^3.C_4$
Character table for $C_2^3.C_4$

Intermediate fields

\(\Q(\sqrt{41}) \), 4.4.68921.1, 4.2.2136551.1, 4.2.52111.1, 8.4.187158857199641.2 x2, 8.4.4564850175601.2

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Galois closure: data not computed
Degree 8 siblings: data not computed
Degree 16 siblings: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type ${\href{/LocalNumberField/2.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/5.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/11.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/13.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/17.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/19.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/23.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{4}$ ${\href{/LocalNumberField/29.8.0.1}{8} }^{2}$ R ${\href{/LocalNumberField/37.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{4}$ R ${\href{/LocalNumberField/43.2.0.1}{2} }^{8}$ ${\href{/LocalNumberField/47.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/59.2.0.1}{2} }^{8}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$31$$\Q_{31}$$x + 7$$1$$1$$0$Trivial$[\ ]$
$\Q_{31}$$x + 7$$1$$1$$0$Trivial$[\ ]$
$\Q_{31}$$x + 7$$1$$1$$0$Trivial$[\ ]$
$\Q_{31}$$x + 7$$1$$1$$0$Trivial$[\ ]$
31.2.1.2$x^{2} + 217$$2$$1$$1$$C_2$$[\ ]_{2}$
31.2.1.2$x^{2} + 217$$2$$1$$1$$C_2$$[\ ]_{2}$
31.2.1.2$x^{2} + 217$$2$$1$$1$$C_2$$[\ ]_{2}$
31.2.1.2$x^{2} + 217$$2$$1$$1$$C_2$$[\ ]_{2}$
31.2.1.2$x^{2} + 217$$2$$1$$1$$C_2$$[\ ]_{2}$
31.2.1.2$x^{2} + 217$$2$$1$$1$$C_2$$[\ ]_{2}$
$41$41.8.7.3$x^{8} - 53136$$8$$1$$7$$C_8$$[\ ]_{8}$
41.8.7.3$x^{8} - 53136$$8$$1$$7$$C_8$$[\ ]_{8}$