/* Data is in the following format Note, if the class group has not been computed, it, the class number, the fundamental units, regulator and whether grh was assumed are all 0. [polynomial, degree, t-number of Galois group, signature [r,s], discriminant, list of ramifying primes, integral basis as polynomials in a, 1 if it is a cm field otherwise 0, class number, class group structure, 1 if grh was assumed and 0 if not, fundamental units, regulator, list of subfields each as a pair [polynomial, number of subfields isomorphic to one defined by this polynomial] ] */ [x^16 - x^15 - 8*x^14 + 12*x^13 + 15*x^12 - 37*x^11 - 13*x^10 + 66*x^9 + 31*x^8 - 110*x^7 - 20*x^6 + 135*x^5 - 30*x^4 - 80*x^3 - 15*x^2 - 30*x - 5, 16, 1385, [4, 6], 334692732183837890625, [3, 5, 7, 59], [1, a, a^2, a^3, a^4, a^5, a^6, a^7, a^8, a^9, a^10, a^11, a^12, a^13, a^14, 1/547544182201*a^15 + 266847666398/547544182201*a^14 - 171342095018/547544182201*a^13 + 164227455374/547544182201*a^12 + 85893232035/547544182201*a^11 - 55751365088/547544182201*a^10 - 136517746971/547544182201*a^9 + 171039036773/547544182201*a^8 - 36883122938/547544182201*a^7 + 121541118134/547544182201*a^6 - 267962825670/547544182201*a^5 + 25852529180/547544182201*a^4 + 139661803629/547544182201*a^3 + 12164102406/547544182201*a^2 - 265576760765/547544182201*a + 65929167223/547544182201], 0, 1, [], 0, [ (107584027)/(2271967561)*a^(15) - (126213165)/(2271967561)*a^(14) - (894075338)/(2271967561)*a^(13) + (1436821343)/(2271967561)*a^(12) + (1735836772)/(2271967561)*a^(11) - (4531707101)/(2271967561)*a^(10) - (1242727640)/(2271967561)*a^(9) + (8480362983)/(2271967561)*a^(8) + (2626565483)/(2271967561)*a^(7) - (14052427366)/(2271967561)*a^(6) - (1464979425)/(2271967561)*a^(5) + (17191561527)/(2271967561)*a^(4) - (5210686445)/(2271967561)*a^(3) - (12901929680)/(2271967561)*a^(2) + (318882355)/(2271967561)*a - (3290821533)/(2271967561) , (429198117032)/(547544182201)*a^(15) - (883416162735)/(547544182201)*a^(14) - (2515079170931)/(547544182201)*a^(13) + (7805481908910)/(547544182201)*a^(12) - (1712174748825)/(547544182201)*a^(11) - (14088967653322)/(547544182201)*a^(10) + (9151904376588)/(547544182201)*a^(9) + (18777837145431)/(547544182201)*a^(8) - (6355720657030)/(547544182201)*a^(7) - (40669018628874)/(547544182201)*a^(6) + (33944496929312)/(547544182201)*a^(5) + (22154619744533)/(547544182201)*a^(4) - (36245653579205)/(547544182201)*a^(3) + (3361745602501)/(547544182201)*a^(2) - (9862545114630)/(547544182201)*a - (2195592397667)/(547544182201) , (501655862489)/(547544182201)*a^(15) - (1044526125180)/(547544182201)*a^(14) - (2889711095154)/(547544182201)*a^(13) + (9189816041593)/(547544182201)*a^(12) - (2382088548808)/(547544182201)*a^(11) - (16292273487989)/(547544182201)*a^(10) + (11305539141235)/(547544182201)*a^(9) + (21379847884868)/(547544182201)*a^(8) - (8299575679003)/(547544182201)*a^(7) - (46954502792069)/(547544182201)*a^(6) + (41783650348586)/(547544182201)*a^(5) + (24271195151627)/(547544182201)*a^(4) - (43385472140000)/(547544182201)*a^(3) + (5880984988188)/(547544182201)*a^(2) - (11322127283890)/(547544182201)*a - (2115496763414)/(547544182201) , (394681951858)/(547544182201)*a^(15) - (840405027433)/(547544182201)*a^(14) - (2237582766259)/(547544182201)*a^(13) + (7320614364865)/(547544182201)*a^(12) - (2174208786987)/(547544182201)*a^(11) - (12640379723798)/(547544182201)*a^(10) + (9262732318705)/(547544182201)*a^(9) + (16402629307958)/(547544182201)*a^(8) - (6932741366776)/(547544182201)*a^(7) - (36671515587726)/(547544182201)*a^(6) + (33885597111175)/(547544182201)*a^(5) + (17565984492081)/(547544182201)*a^(4) - (33815433480535)/(547544182201)*a^(3) + (5543707223815)/(547544182201)*a^(2) - (9584566686750)/(547544182201)*a - (1124487065991)/(547544182201) , (75963167874)/(547544182201)*a^(15) - (160086590557)/(547544182201)*a^(14) - (478680255292)/(547544182201)*a^(13) + (1469498577106)/(547544182201)*a^(12) - (115129161049)/(547544182201)*a^(11) - (3126481282588)/(547544182201)*a^(10) + (1731361190666)/(547544182201)*a^(9) + (4595495047948)/(547544182201)*a^(8) - (1849071833364)/(547544182201)*a^(7) - (8987293266452)/(547544182201)*a^(6) + (6514202369900)/(547544182201)*a^(5) + (7509825075968)/(547544182201)*a^(4) - (9122692517139)/(547544182201)*a^(3) - (2083701494993)/(547544182201)*a^(2) + (1439553458177)/(547544182201)*a - (310246280651)/(547544182201) , (123368955561)/(547544182201)*a^(15) - (246565138515)/(547544182201)*a^(14) - (736526468551)/(547544182201)*a^(13) + (2187254690003)/(547544182201)*a^(12) - (358906586256)/(547544182201)*a^(11) - (4018628815287)/(547544182201)*a^(10) + (2275892324016)/(547544182201)*a^(9) + (5609445900151)/(547544182201)*a^(8) - (1363315009967)/(547544182201)*a^(7) - (11853105843773)/(547544182201)*a^(6) + (8783005896691)/(547544182201)*a^(5) + (7097499745795)/(547544182201)*a^(4) - (9479682181694)/(547544182201)*a^(3) - (352196838800)/(547544182201)*a^(2) - (2959775445448)/(547544182201)*a - (876267655196)/(547544182201) , (51041123717)/(547544182201)*a^(15) - (79467821172)/(547544182201)*a^(14) - (346848176310)/(547544182201)*a^(13) + (773823699992)/(547544182201)*a^(12) + (211356292039)/(547544182201)*a^(11) - (1753217969061)/(547544182201)*a^(10) + (383647195965)/(547544182201)*a^(9) + (2765252566416)/(547544182201)*a^(8) + (189242250122)/(547544182201)*a^(7) - (5107720560609)/(547544182201)*a^(6) + (1830481897574)/(547544182201)*a^(5) + (4408990432714)/(547544182201)*a^(4) - (3302829891920)/(547544182201)*a^(3) - (1879369814935)/(547544182201)*a^(2) - (1131404802999)/(547544182201)*a - (848922693299)/(547544182201) , (9277104608)/(547544182201)*a^(15) - (78183949589)/(547544182201)*a^(14) + (52036497252)/(547544182201)*a^(13) + (513923212562)/(547544182201)*a^(12) - (1009933017318)/(547544182201)*a^(11) - (139006000257)/(547544182201)*a^(10) + (1949355559662)/(547544182201)*a^(9) - (603661805462)/(547544182201)*a^(8) - (2361719463877)/(547544182201)*a^(7) - (335679171195)/(547544182201)*a^(6) + (5590768081096)/(547544182201)*a^(5) - (3589840298568)/(547544182201)*a^(4) - (3183215631517)/(547544182201)*a^(3) + (4056358868857)/(547544182201)*a^(2) - (1237507675451)/(547544182201)*a + (936051616456)/(547544182201) , (131676491994)/(547544182201)*a^(15) - (268423071546)/(547544182201)*a^(14) - (771532027514)/(547544182201)*a^(13) + (2355291919175)/(547544182201)*a^(12) - (504065111780)/(547544182201)*a^(11) - (4145717855113)/(547544182201)*a^(10) + (2658608437924)/(547544182201)*a^(9) + (5517324794737)/(547544182201)*a^(8) - (1774368716171)/(547544182201)*a^(7) - (11979355075925)/(547544182201)*a^(6) + (9974205748144)/(547544182201)*a^(5) + (5834630562101)/(547544182201)*a^(4) - (10603856738443)/(547544182201)*a^(3) + (1961702190084)/(547544182201)*a^(2) - (2700620464963)/(547544182201)*a - (678404741974)/(547544182201) ], 12279.1902565, [[x^2 - x - 1, 1], [x^4 - x^3 - 4*x^2 + 4*x + 1, 1], [x^8 - 3*x^7 + 4*x^6 - 2*x^5 - 4*x^4 + 5*x^3 + 5*x - 5, 1]]]