Normalized defining polynomial
\( x^{16} - 8 x^{15} + 52 x^{14} - 224 x^{13} + 742 x^{12} - 1904 x^{11} + 3962 x^{10} - 6742 x^{9} + 9300 x^{8} - 10256 x^{7} + 3590 x^{6} + 9964 x^{5} - 36601 x^{4} + 51574 x^{3} - 12852 x^{2} - 10598 x + 11839 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[4, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(3340206345557585382040261009=23^{6}\cdot 41^{12}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $52.51$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $23, 41$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{2} a^{4} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{2} a^{5} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{2} a^{6} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{7} - \frac{1}{2} a^{3} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{12} a^{8} + \frac{1}{6} a^{7} + \frac{1}{6} a^{5} - \frac{1}{6} a^{4} - \frac{1}{2} a^{3} + \frac{5}{12} a^{2} + \frac{1}{3} a - \frac{1}{12}$, $\frac{1}{12} a^{9} + \frac{1}{6} a^{7} + \frac{1}{6} a^{6} - \frac{1}{6} a^{4} - \frac{1}{12} a^{3} + \frac{1}{4} a - \frac{1}{3}$, $\frac{1}{12} a^{10} - \frac{1}{6} a^{7} - \frac{1}{4} a^{4} - \frac{1}{12} a^{2} - \frac{1}{3}$, $\frac{1}{12} a^{11} - \frac{1}{6} a^{7} + \frac{1}{12} a^{5} + \frac{1}{6} a^{4} + \frac{5}{12} a^{3} - \frac{1}{6} a^{2} + \frac{1}{3} a - \frac{1}{6}$, $\frac{1}{5664} a^{12} - \frac{1}{944} a^{11} - \frac{17}{944} a^{10} + \frac{31}{1888} a^{9} - \frac{103}{5664} a^{8} - \frac{289}{1416} a^{7} + \frac{595}{5664} a^{6} - \frac{5}{1416} a^{5} + \frac{371}{1888} a^{4} + \frac{1117}{5664} a^{3} + \frac{925}{1888} a^{2} - \frac{17}{96} a - \frac{1045}{5664}$, $\frac{1}{5664} a^{13} - \frac{23}{944} a^{11} - \frac{47}{5664} a^{10} - \frac{17}{5664} a^{9} + \frac{19}{944} a^{8} + \frac{1211}{5664} a^{7} - \frac{113}{2832} a^{6} - \frac{895}{5664} a^{5} + \frac{715}{5664} a^{4} + \frac{1453}{5664} a^{3} - \frac{291}{1888} a^{2} + \frac{635}{1888} a + \frac{169}{2832}$, $\frac{1}{4810033056} a^{14} - \frac{7}{4810033056} a^{13} - \frac{46237}{4810033056} a^{12} + \frac{277513}{4810033056} a^{11} + \frac{2999303}{801672176} a^{10} - \frac{15420521}{801672176} a^{9} - \frac{11145427}{2405016528} a^{8} + \frac{647355101}{4810033056} a^{7} - \frac{454718341}{2405016528} a^{6} + \frac{738720}{50104511} a^{5} - \frac{465660715}{4810033056} a^{4} + \frac{584982191}{1603344352} a^{3} + \frac{199399715}{4810033056} a^{2} - \frac{300233555}{1202508264} a - \frac{217800877}{1603344352}$, $\frac{1}{4728262494048} a^{15} + \frac{121}{1182065623512} a^{14} - \frac{320209007}{4728262494048} a^{13} - \frac{28369457}{4728262494048} a^{12} + \frac{36756024601}{4728262494048} a^{11} - \frac{130726304387}{4728262494048} a^{10} + \frac{29022196255}{2364131247024} a^{9} + \frac{10808045385}{788043749008} a^{8} + \frac{86619711807}{788043749008} a^{7} + \frac{344700392889}{1576087498016} a^{6} - \frac{125274669047}{1182065623512} a^{5} - \frac{167674845415}{2364131247024} a^{4} + \frac{256674211855}{788043749008} a^{3} + \frac{71534828791}{1576087498016} a^{2} + \frac{482953322355}{1576087498016} a + \frac{231891131483}{591032811756}$
Class group and class number
$C_{3}$, which has order $3$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 14663707.1604 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_4\wr C_2$ (as 16T28):
| A solvable group of order 32 |
| The 14 conjugacy class representatives for $C_4\wr C_2$ |
| Character table for $C_4\wr C_2$ |
Intermediate fields
| \(\Q(\sqrt{41}) \), 4.2.38663.1, 4.4.68921.1, 4.2.1585183.1, 8.4.2512805143489.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
| Degree 8 siblings: | data not computed |
| Degree 16 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/3.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/5.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/11.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/17.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/19.8.0.1}{8} }^{2}$ | R | ${\href{/LocalNumberField/29.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/37.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{4}$ | R | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/59.1.0.1}{1} }^{16}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $23$ | $\Q_{23}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{23}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{23}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{23}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 23.2.1.2 | $x^{2} + 46$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 23.2.1.2 | $x^{2} + 46$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 23.2.1.2 | $x^{2} + 46$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 23.2.1.2 | $x^{2} + 46$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 23.2.1.2 | $x^{2} + 46$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 23.2.1.2 | $x^{2} + 46$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| $41$ | 41.4.3.1 | $x^{4} - 41$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ |
| 41.4.3.1 | $x^{4} - 41$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 41.4.3.1 | $x^{4} - 41$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 41.4.3.1 | $x^{4} - 41$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ |