Normalized defining polynomial
\( x^{16} - 6 x^{15} + 21 x^{14} + 9 x^{13} - 307 x^{12} + 895 x^{11} + 167 x^{10} - 6988 x^{9} + 13605 x^{8} + 18828 x^{7} - 114234 x^{6} + 94011 x^{5} + 204683 x^{4} - 276266 x^{3} - 230872 x^{2} + 467792 x - 150064 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[4, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(3340206345557585382040261009=23^{6}\cdot 41^{12}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $52.51$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $23, 41$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $\frac{1}{2} a^{9} - \frac{1}{2} a^{8} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{46} a^{10} + \frac{9}{46} a^{9} - \frac{5}{23} a^{8} - \frac{13}{46} a^{7} + \frac{21}{46} a^{6} - \frac{7}{46} a^{5} - \frac{7}{23} a^{4} - \frac{11}{46} a^{3} + \frac{19}{46} a^{2} - \frac{7}{23} a - \frac{2}{23}$, $\frac{1}{230} a^{11} + \frac{1}{230} a^{10} + \frac{1}{23} a^{9} - \frac{5}{46} a^{8} - \frac{59}{230} a^{7} + \frac{11}{46} a^{6} + \frac{44}{115} a^{5} - \frac{83}{230} a^{4} - \frac{31}{230} a^{3} - \frac{37}{115} a^{2} + \frac{8}{115} a - \frac{7}{115}$, $\frac{1}{230} a^{12} - \frac{1}{230} a^{10} - \frac{1}{23} a^{9} - \frac{49}{230} a^{8} + \frac{7}{115} a^{7} - \frac{31}{115} a^{6} + \frac{7}{115} a^{5} + \frac{77}{230} a^{4} + \frac{67}{230} a^{3} + \frac{3}{46} a^{2} - \frac{1}{46} a + \frac{27}{115}$, $\frac{1}{230} a^{13} + \frac{1}{230} a^{10} + \frac{51}{230} a^{9} - \frac{111}{230} a^{8} - \frac{21}{230} a^{7} + \frac{49}{230} a^{6} + \frac{19}{46} a^{5} + \frac{37}{115} a^{4} + \frac{52}{115} a^{3} + \frac{111}{230} a^{2} - \frac{7}{23} a - \frac{27}{115}$, $\frac{1}{52900} a^{14} - \frac{24}{13225} a^{13} + \frac{87}{52900} a^{12} - \frac{67}{52900} a^{11} + \frac{31}{10580} a^{10} + \frac{3423}{52900} a^{9} + \frac{7627}{52900} a^{8} + \frac{1284}{2645} a^{7} + \frac{11077}{52900} a^{6} - \frac{4218}{13225} a^{5} - \frac{6548}{13225} a^{4} - \frac{19641}{52900} a^{3} - \frac{3739}{52900} a^{2} - \frac{2688}{13225} a - \frac{1384}{13225}$, $\frac{1}{7944336744982829736187563400} a^{15} - \frac{35312809079548054736391}{3972168372491414868093781700} a^{14} - \frac{1746448961228259446299527}{7944336744982829736187563400} a^{13} + \frac{11312830307019645529002461}{7944336744982829736187563400} a^{12} + \frac{2247984389248773524115577}{7944336744982829736187563400} a^{11} - \frac{8577896007196478261389177}{7944336744982829736187563400} a^{10} + \frac{1646631086587629340331778079}{7944336744982829736187563400} a^{9} + \frac{439491400567231326655058236}{993042093122853717023445425} a^{8} - \frac{18969237593461366269492783}{7944336744982829736187563400} a^{7} + \frac{416558127094792085911915232}{993042093122853717023445425} a^{6} - \frac{54108148356950530161617073}{794433674498282973618756340} a^{5} - \frac{1236790849954562854735224269}{7944336744982829736187563400} a^{4} - \frac{3586474657648947503180530633}{7944336744982829736187563400} a^{3} + \frac{418987453970802886458934221}{3972168372491414868093781700} a^{2} - \frac{735290908182141853760584301}{1986084186245707434046890850} a + \frac{889979833289014479563344}{8787983124981006345340225}$
Class group and class number
$C_{3}\times C_{3}$, which has order $9$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 5487683.59986 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 32 |
| The 14 conjugacy class representatives for $D_4:C_4$ |
| Character table for $D_4:C_4$ |
Intermediate fields
| \(\Q(\sqrt{41}) \), 4.4.68921.1, 4.2.38663.1, 4.2.1585183.1, 8.2.57794518300247.1, 8.2.34381034087.1, 8.4.2512805143489.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
| Degree 16 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/3.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/5.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/11.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/17.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/19.8.0.1}{8} }^{2}$ | R | ${\href{/LocalNumberField/29.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/37.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{4}$ | R | ${\href{/LocalNumberField/43.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{8}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $23$ | $\Q_{23}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{23}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{23}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{23}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 23.2.1.2 | $x^{2} + 46$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 23.2.1.2 | $x^{2} + 46$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 23.2.1.2 | $x^{2} + 46$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 23.2.1.2 | $x^{2} + 46$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 23.2.1.2 | $x^{2} + 46$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 23.2.1.2 | $x^{2} + 46$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| $41$ | 41.4.3.1 | $x^{4} - 41$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ |
| 41.4.3.1 | $x^{4} - 41$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 41.4.3.1 | $x^{4} - 41$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 41.4.3.1 | $x^{4} - 41$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ |