Properties

Label 16.4.32480690176...0000.3
Degree $16$
Signature $[4, 6]$
Discriminant $2^{40}\cdot 5^{12}\cdot 11^{2}$
Root discriminant $25.53$
Ramified primes $2, 5, 11$
Class number $1$ (GRH)
Class group Trivial (GRH)
Galois group 16T797

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![41, 308, 632, 280, -350, 44, 920, 832, 106, -180, -160, -72, -2, -12, 8, 0, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^16 + 8*x^14 - 12*x^13 - 2*x^12 - 72*x^11 - 160*x^10 - 180*x^9 + 106*x^8 + 832*x^7 + 920*x^6 + 44*x^5 - 350*x^4 + 280*x^3 + 632*x^2 + 308*x + 41)
 
gp: K = bnfinit(x^16 + 8*x^14 - 12*x^13 - 2*x^12 - 72*x^11 - 160*x^10 - 180*x^9 + 106*x^8 + 832*x^7 + 920*x^6 + 44*x^5 - 350*x^4 + 280*x^3 + 632*x^2 + 308*x + 41, 1)
 

Normalized defining polynomial

\( x^{16} + 8 x^{14} - 12 x^{13} - 2 x^{12} - 72 x^{11} - 160 x^{10} - 180 x^{9} + 106 x^{8} + 832 x^{7} + 920 x^{6} + 44 x^{5} - 350 x^{4} + 280 x^{3} + 632 x^{2} + 308 x + 41 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $16$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[4, 6]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(32480690176000000000000=2^{40}\cdot 5^{12}\cdot 11^{2}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $25.53$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $2, 5, 11$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{2} a^{8} - \frac{1}{2}$, $\frac{1}{2} a^{9} - \frac{1}{2} a$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{3}$, $\frac{1}{2} a^{12} - \frac{1}{2} a^{4}$, $\frac{1}{2} a^{13} - \frac{1}{2} a^{5}$, $\frac{1}{16682} a^{14} + \frac{230}{8341} a^{13} + \frac{3681}{16682} a^{12} - \frac{74}{8341} a^{11} - \frac{1070}{8341} a^{10} + \frac{3013}{16682} a^{9} - \frac{2333}{16682} a^{8} - \frac{2797}{8341} a^{7} - \frac{6293}{16682} a^{6} - \frac{46}{8341} a^{5} + \frac{7223}{16682} a^{4} - \frac{1032}{8341} a^{3} - \frac{100}{8341} a^{2} + \frac{227}{16682} a - \frac{6207}{16682}$, $\frac{1}{60103038901352282} a^{15} - \frac{1292756126249}{60103038901352282} a^{14} - \frac{790522864972273}{5463912627395662} a^{13} + \frac{2128526796438784}{30051519450676141} a^{12} + \frac{2760089459903339}{60103038901352282} a^{11} + \frac{2563156087799275}{60103038901352282} a^{10} + \frac{611914766354739}{2731956313697831} a^{9} - \frac{10535967217765257}{60103038901352282} a^{8} - \frac{27582134601253667}{60103038901352282} a^{7} + \frac{20048341712759375}{60103038901352282} a^{6} - \frac{9592662148518165}{60103038901352282} a^{5} - \frac{9109491304882865}{30051519450676141} a^{4} + \frac{14940186667361149}{60103038901352282} a^{3} - \frac{29509938325120569}{60103038901352282} a^{2} - \frac{10090664716466889}{30051519450676141} a + \frac{1178700618540979}{60103038901352282}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

Trivial group, which has order $1$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $9$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 76153.2946361 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

16T797:

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A solvable group of order 512
The 62 conjugacy class representatives for t16n797 are not computed
Character table for t16n797 is not computed

Intermediate fields

\(\Q(\sqrt{2}) \), \(\Q(\sqrt{5}) \), \(\Q(\sqrt{10}) \), 4.4.8000.1, \(\Q(\zeta_{20})^+\), \(\Q(\sqrt{2}, \sqrt{5})\), \(\Q(\zeta_{40})^+\)

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Degree 16 siblings: data not computed
Degree 32 siblings: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type R ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ R ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}$ R ${\href{/LocalNumberField/13.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/17.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/19.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/29.2.0.1}{2} }^{8}$ ${\href{/LocalNumberField/31.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/41.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{8}$ ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/47.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/59.2.0.1}{2} }^{8}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
2Data not computed
5Data not computed
$11$11.2.0.1$x^{2} - x + 7$$1$$2$$0$$C_2$$[\ ]^{2}$
11.2.0.1$x^{2} - x + 7$$1$$2$$0$$C_2$$[\ ]^{2}$
11.2.0.1$x^{2} - x + 7$$1$$2$$0$$C_2$$[\ ]^{2}$
11.2.0.1$x^{2} - x + 7$$1$$2$$0$$C_2$$[\ ]^{2}$
11.4.0.1$x^{4} - x + 2$$1$$4$$0$$C_4$$[\ ]^{4}$
11.4.2.2$x^{4} - 11 x^{2} + 847$$2$$2$$2$$C_4$$[\ ]_{2}^{2}$