Normalized defining polynomial
\( x^{16} - 6 x^{15} - 11 x^{14} + 118 x^{13} - 19 x^{12} - 987 x^{11} + 1667 x^{10} + 774 x^{9} - 3520 x^{8} + 643 x^{7} + 1339 x^{6} + 237 x^{5} - 3444 x^{4} + 6137 x^{3} - 3038 x^{2} - 981 x + 909 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[4, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(313426397802392026311505288813=13^{11}\cdot 53^{10}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $69.74$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $13, 53$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $\frac{1}{39} a^{14} - \frac{16}{39} a^{13} - \frac{19}{39} a^{12} - \frac{7}{39} a^{11} + \frac{2}{13} a^{10} + \frac{4}{13} a^{9} - \frac{7}{39} a^{8} - \frac{2}{39} a^{7} + \frac{16}{39} a^{6} + \frac{16}{39} a^{4} - \frac{1}{39} a^{3} + \frac{1}{39} a^{2} + \frac{16}{39} a - \frac{4}{13}$, $\frac{1}{25253023283485619806766584743} a^{15} - \frac{59832213006489828101469550}{8417674427828539935588861581} a^{14} - \frac{5729006501780099149400836043}{25253023283485619806766584743} a^{13} + \frac{283754216464408361298344767}{1942540252575816908212814211} a^{12} - \frac{5159664147598038200820259537}{25253023283485619806766584743} a^{11} - \frac{2791059060604764356297105950}{8417674427828539935588861581} a^{10} - \frac{12570442752207668233487616562}{25253023283485619806766584743} a^{9} - \frac{184265926775943905171076255}{8417674427828539935588861581} a^{8} + \frac{6264436632387415820287536185}{25253023283485619806766584743} a^{7} - \frac{3280074718546322597960816351}{25253023283485619806766584743} a^{6} + \frac{8875696991117487766777290778}{25253023283485619806766584743} a^{5} - \frac{2892780827004403193381222253}{8417674427828539935588861581} a^{4} + \frac{79411935719031227970701274}{647513417525272302737604737} a^{3} - \frac{398850672906025022208845458}{25253023283485619806766584743} a^{2} + \frac{4207695532012186759252934269}{25253023283485619806766584743} a + \frac{3400876215383643447590124267}{8417674427828539935588861581}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 1831702069.86 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_4:D_4.D_4$ (as 16T681):
| A solvable group of order 256 |
| The 19 conjugacy class representatives for $C_4:D_4.D_4$ |
| Character table for $C_4:D_4.D_4$ |
Intermediate fields
| \(\Q(\sqrt{13}) \), 4.4.8957.1, 8.4.2929680361933.5 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | $16$ | ${\href{/LocalNumberField/3.8.0.1}{8} }{,}\,{\href{/LocalNumberField/3.4.0.1}{4} }{,}\,{\href{/LocalNumberField/3.1.0.1}{1} }^{4}$ | $16$ | ${\href{/LocalNumberField/7.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{2}$ | R | ${\href{/LocalNumberField/17.8.0.1}{8} }^{2}$ | $16$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{4}$ | $16$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{2}$ | $16$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{2}$ | R | ${\href{/LocalNumberField/59.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $13$ | 13.2.1.1 | $x^{2} - 13$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 13.2.1.1 | $x^{2} - 13$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 13.4.3.2 | $x^{4} - 52$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 13.4.3.2 | $x^{4} - 52$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 13.4.3.2 | $x^{4} - 52$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| $53$ | 53.4.0.1 | $x^{4} - x + 18$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ |
| 53.4.3.3 | $x^{4} + 106$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 53.8.7.2 | $x^{8} - 212$ | $8$ | $1$ | $7$ | $C_8:C_2$ | $[\ ]_{8}^{2}$ |