Properties

Label 16.4.31342639780...8813.2
Degree $16$
Signature $[4, 6]$
Discriminant $13^{11}\cdot 53^{10}$
Root discriminant $69.74$
Ramified primes $13, 53$
Class number $1$ (GRH)
Class group Trivial (GRH)
Galois group $C_4:D_4.D_4$ (as 16T681)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-77607, -386833, -391063, -129250, -81462, 28094, 75241, 20408, 14359, 3754, -2967, 373, 5, -92, 23, -5, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^16 - 5*x^15 + 23*x^14 - 92*x^13 + 5*x^12 + 373*x^11 - 2967*x^10 + 3754*x^9 + 14359*x^8 + 20408*x^7 + 75241*x^6 + 28094*x^5 - 81462*x^4 - 129250*x^3 - 391063*x^2 - 386833*x - 77607)
 
gp: K = bnfinit(x^16 - 5*x^15 + 23*x^14 - 92*x^13 + 5*x^12 + 373*x^11 - 2967*x^10 + 3754*x^9 + 14359*x^8 + 20408*x^7 + 75241*x^6 + 28094*x^5 - 81462*x^4 - 129250*x^3 - 391063*x^2 - 386833*x - 77607, 1)
 

Normalized defining polynomial

\( x^{16} - 5 x^{15} + 23 x^{14} - 92 x^{13} + 5 x^{12} + 373 x^{11} - 2967 x^{10} + 3754 x^{9} + 14359 x^{8} + 20408 x^{7} + 75241 x^{6} + 28094 x^{5} - 81462 x^{4} - 129250 x^{3} - 391063 x^{2} - 386833 x - 77607 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $16$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[4, 6]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(313426397802392026311505288813=13^{11}\cdot 53^{10}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $69.74$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $13, 53$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $\frac{1}{13} a^{14} + \frac{1}{13} a^{13} - \frac{6}{13} a^{12} + \frac{6}{13} a^{11} + \frac{4}{13} a^{10} + \frac{5}{13} a^{9} + \frac{4}{13} a^{8} + \frac{2}{13} a^{7} - \frac{4}{13} a^{6} - \frac{5}{13} a^{5} + \frac{3}{13} a^{4} - \frac{1}{13} a^{3} + \frac{2}{13} a^{2} + \frac{4}{13} a - \frac{4}{13}$, $\frac{1}{102910977661495117352255838514152145785267} a^{15} - \frac{432239188993916196483188365086524100524}{34303659220498372450751946171384048595089} a^{14} + \frac{38098975365144475740870600827864686568690}{102910977661495117352255838514152145785267} a^{13} + \frac{42235899637575516498715814529676341748952}{102910977661495117352255838514152145785267} a^{12} - \frac{4375673823221222867200904661392602348087}{11434553073499457483583982057128016198363} a^{11} - \frac{18080917371459746947978542298883111670923}{102910977661495117352255838514152145785267} a^{10} - \frac{11251700551301488863054089717450001352429}{102910977661495117352255838514152145785267} a^{9} + \frac{43224243400712281313814778900735706503811}{102910977661495117352255838514152145785267} a^{8} - \frac{29653441204931562614696017622244681000649}{102910977661495117352255838514152145785267} a^{7} - \frac{9277249566876018787920449838688657148387}{34303659220498372450751946171384048595089} a^{6} + \frac{34112812060814118965970671286405791527102}{102910977661495117352255838514152145785267} a^{5} + \frac{27324165523294127251399304872913166507157}{102910977661495117352255838514152145785267} a^{4} + \frac{23847758292817528217854411895027368641467}{102910977661495117352255838514152145785267} a^{3} + \frac{2608729260019079570531119272652936225755}{11434553073499457483583982057128016198363} a^{2} + \frac{7016503328834074707566198249833149610331}{102910977661495117352255838514152145785267} a - \frac{1504784791193081921844696100386089943634}{11434553073499457483583982057128016198363}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

Trivial group, which has order $1$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $9$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 863343322.007 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$C_4:D_4.D_4$ (as 16T681):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A solvable group of order 256
The 19 conjugacy class representatives for $C_4:D_4.D_4$
Character table for $C_4:D_4.D_4$

Intermediate fields

\(\Q(\sqrt{13}) \), 4.4.8957.1, 8.4.2929680361933.3

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Degree 16 siblings: data not computed
Degree 32 siblings: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type $16$ ${\href{/LocalNumberField/3.8.0.1}{8} }{,}\,{\href{/LocalNumberField/3.4.0.1}{4} }{,}\,{\href{/LocalNumberField/3.1.0.1}{1} }^{4}$ $16$ ${\href{/LocalNumberField/7.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }^{2}$ ${\href{/LocalNumberField/11.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{2}$ R ${\href{/LocalNumberField/17.8.0.1}{8} }^{2}$ $16$ ${\href{/LocalNumberField/23.2.0.1}{2} }^{8}$ ${\href{/LocalNumberField/29.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{4}$ $16$ ${\href{/LocalNumberField/37.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{2}$ $16$ ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/47.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{2}$ R ${\href{/LocalNumberField/59.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{2}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$13$13.4.2.1$x^{4} + 39 x^{2} + 676$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
13.4.3.1$x^{4} - 13$$4$$1$$3$$C_4$$[\ ]_{4}$
13.8.6.1$x^{8} - 13 x^{4} + 2704$$4$$2$$6$$C_4\times C_2$$[\ ]_{4}^{2}$
$53$53.4.0.1$x^{4} - x + 18$$1$$4$$0$$C_4$$[\ ]^{4}$
53.4.3.3$x^{4} + 106$$4$$1$$3$$C_4$$[\ ]_{4}$
53.8.7.2$x^{8} - 212$$8$$1$$7$$C_8:C_2$$[\ ]_{8}^{2}$