Normalized defining polynomial
\( x^{16} - 4 x^{15} - 15 x^{14} + 109 x^{13} - 17 x^{12} - 1210 x^{11} + 1387 x^{10} + 13691 x^{9} - 64519 x^{8} + 140155 x^{7} - 185880 x^{6} + 127518 x^{5} + 85563 x^{4} - 185692 x^{3} + 26000 x^{2} + 153283 x + 29237 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[4, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(313426397802392026311505288813=13^{11}\cdot 53^{10}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $69.74$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $13, 53$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{13} a^{12} - \frac{3}{13} a^{11} - \frac{2}{13} a^{10} - \frac{6}{13} a^{9} - \frac{3}{13} a^{8} + \frac{4}{13} a^{7} + \frac{4}{13} a^{6} + \frac{5}{13} a^{5} + \frac{4}{13} a^{4} - \frac{5}{13} a^{3} + \frac{1}{13} a^{2}$, $\frac{1}{13} a^{13} + \frac{2}{13} a^{11} + \frac{1}{13} a^{10} + \frac{5}{13} a^{9} - \frac{5}{13} a^{8} + \frac{3}{13} a^{7} + \frac{4}{13} a^{6} + \frac{6}{13} a^{5} - \frac{6}{13} a^{4} - \frac{1}{13} a^{3} + \frac{3}{13} a^{2}$, $\frac{1}{14986023} a^{14} - \frac{210829}{14986023} a^{13} + \frac{86873}{14986023} a^{12} - \frac{3987364}{14986023} a^{11} - \frac{180538}{1152771} a^{10} + \frac{2391741}{4995341} a^{9} + \frac{5786822}{14986023} a^{8} + \frac{569921}{1152771} a^{7} - \frac{1572495}{4995341} a^{6} - \frac{541219}{14986023} a^{5} + \frac{1140443}{4995341} a^{4} - \frac{6750563}{14986023} a^{3} - \frac{548979}{4995341} a^{2} + \frac{385984}{1152771} a + \frac{243914}{1152771}$, $\frac{1}{3035335967459282541470716423431633} a^{15} + \frac{64052295043658158831753049}{3035335967459282541470716423431633} a^{14} + \frac{982380782829910806114699360104}{233487382112252503190055109494741} a^{13} + \frac{28094010873259218675671171495663}{3035335967459282541470716423431633} a^{12} - \frac{1229144002370949817821437939371762}{3035335967459282541470716423431633} a^{11} - \frac{5990469048058137561137810262831}{1011778655819760847156905474477211} a^{10} + \frac{55285260741140485842751298423963}{3035335967459282541470716423431633} a^{9} + \frac{105755057538521263681362707458070}{3035335967459282541470716423431633} a^{8} + \frac{433311382849399867484234619765184}{1011778655819760847156905474477211} a^{7} + \frac{1376936887778410866734606182981550}{3035335967459282541470716423431633} a^{6} + \frac{435028032818317232661519763161219}{1011778655819760847156905474477211} a^{5} + \frac{1359307731759979321135426307886817}{3035335967459282541470716423431633} a^{4} - \frac{176743505126920559790990141435732}{1011778655819760847156905474477211} a^{3} + \frac{287397723573849078659537934279589}{3035335967459282541470716423431633} a^{2} - \frac{83799539881143806072750790183718}{233487382112252503190055109494741} a - \frac{19094278736309896762712569876612}{77829127370750834396685036498247}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 317898884.513 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_4:D_4.D_4$ (as 16T681):
| A solvable group of order 256 |
| The 19 conjugacy class representatives for $C_4:D_4.D_4$ |
| Character table for $C_4:D_4.D_4$ |
Intermediate fields
| \(\Q(\sqrt{13}) \), 4.4.8957.1, 8.4.2929680361933.3 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | $16$ | ${\href{/LocalNumberField/3.8.0.1}{8} }{,}\,{\href{/LocalNumberField/3.4.0.1}{4} }{,}\,{\href{/LocalNumberField/3.2.0.1}{2} }^{2}$ | $16$ | ${\href{/LocalNumberField/7.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{2}$ | R | ${\href{/LocalNumberField/17.8.0.1}{8} }^{2}$ | $16$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{4}$ | $16$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{2}$ | $16$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{2}$ | R | ${\href{/LocalNumberField/59.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $13$ | 13.2.1.1 | $x^{2} - 13$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 13.2.1.1 | $x^{2} - 13$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 13.4.3.2 | $x^{4} - 52$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 13.4.3.2 | $x^{4} - 52$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 13.4.3.2 | $x^{4} - 52$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| $53$ | 53.4.3.4 | $x^{4} + 424$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ |
| 53.4.0.1 | $x^{4} - x + 18$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 53.8.7.2 | $x^{8} - 212$ | $8$ | $1$ | $7$ | $C_8:C_2$ | $[\ ]_{8}^{2}$ |