Normalized defining polynomial
\( x^{16} + 112 x^{14} + 3848 x^{12} - 1234 x^{10} - 2874498 x^{8} - 61766136 x^{6} - 437946455 x^{4} - 423979746 x^{2} + 268927201 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[4, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(31087867512274251337747808514764310961=31^{10}\cdot 41^{14}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $220.44$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $31, 41$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{2} a^{4} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{2} a^{5} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{2} a^{6} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{7} - \frac{1}{2} a^{3} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{4} a^{8} - \frac{1}{4} a^{2} - \frac{1}{2} a - \frac{1}{4}$, $\frac{1}{4} a^{9} - \frac{1}{4} a^{3} - \frac{1}{2} a^{2} - \frac{1}{4} a$, $\frac{1}{4} a^{10} - \frac{1}{4} a^{4} - \frac{1}{2} a^{3} - \frac{1}{4} a^{2}$, $\frac{1}{4} a^{11} - \frac{1}{4} a^{5} - \frac{1}{4} a^{3} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{67208} a^{12} + \frac{603}{8401} a^{10} - \frac{1}{8} a^{9} + \frac{5863}{67208} a^{8} - \frac{9821}{67208} a^{6} - \frac{1}{4} a^{5} + \frac{9587}{67208} a^{4} - \frac{3}{8} a^{3} - \frac{359}{2168} a^{2} - \frac{1}{8} a - \frac{149}{2168}$, $\frac{1}{1545784} a^{13} + \frac{26409}{386446} a^{11} - \frac{1}{8} a^{10} - \frac{78147}{1545784} a^{9} + \frac{259011}{1545784} a^{7} - \frac{1}{4} a^{6} + \frac{9587}{1545784} a^{5} + \frac{1}{8} a^{4} - \frac{20413}{49864} a^{3} - \frac{1}{8} a^{2} + \frac{2561}{49864} a - \frac{1}{2}$, $\frac{1}{2390959199945341166776} a^{14} - \frac{4633509427085571}{2390959199945341166776} a^{12} - \frac{1}{8} a^{11} - \frac{182344376375053660267}{2390959199945341166776} a^{10} - \frac{1}{8} a^{9} - \frac{5120910628382851272}{298869899993167645847} a^{8} - \frac{1}{4} a^{7} + \frac{208344648222020273475}{1195479599972670583388} a^{6} - \frac{1}{8} a^{5} - \frac{76506732239209876489}{597739799986335291694} a^{4} - \frac{1}{2} a^{3} + \frac{1851525920697999145}{9640964515908633737} a^{2} + \frac{3}{8} a + \frac{1295788397060773}{145799085306746824}$, $\frac{1}{54992061598742846835848} a^{15} - \frac{4633509427085571}{54992061598742846835848} a^{13} + \frac{1610875023583952214815}{54992061598742846835848} a^{11} - \frac{1}{8} a^{10} + \frac{3246601614897781294141}{54992061598742846835848} a^{9} - \frac{1}{8} a^{8} + \frac{4990263048112702607027}{27496030799371423417924} a^{7} - \frac{1}{4} a^{6} - \frac{1682037816082026990403}{6874007699842855854481} a^{5} - \frac{1}{8} a^{4} - \frac{149084189404862780369}{1773937470927188607608} a^{3} + \frac{287365896296923003}{838344740513794238} a - \frac{1}{8}$
Class group and class number
$C_{2}\times C_{2}$, which has order $4$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 989393453954 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 512 |
| The 32 conjugacy class representatives for t16n817 |
| Character table for t16n817 is not computed |
Intermediate fields
| \(\Q(\sqrt{41}) \), 4.4.68921.1, 8.8.179859661768855001.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/5.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/11.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/13.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/17.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/19.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{12}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }^{2}$ | R | ${\href{/LocalNumberField/37.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{4}$ | R | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/47.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{8}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 31 | Data not computed | ||||||
| 41 | Data not computed | ||||||