Normalized defining polynomial
\( x^{16} - 6 x^{15} + 87 x^{14} - 488 x^{13} + 3268 x^{12} - 13386 x^{11} + 51042 x^{10} - 142950 x^{9} + 288795 x^{8} - 393476 x^{7} - 100557 x^{6} + 1254102 x^{5} - 3337665 x^{4} + 4289566 x^{3} - 2665081 x^{2} + 766748 x + 2904383 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[4, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(30854674434917562989871890897=17^{15}\cdot 47^{6}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $60.34$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $17, 47$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{2} a^{8} - \frac{1}{2} a^{7} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{2} a^{9} - \frac{1}{2} a^{7} - \frac{1}{2} a^{5} - \frac{1}{2}$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{7} - \frac{1}{2} a^{6} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2}$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{5} - \frac{1}{2} a^{2} - \frac{1}{2}$, $\frac{1}{2} a^{12} - \frac{1}{2} a^{6} - \frac{1}{2} a^{3} - \frac{1}{2} a$, $\frac{1}{2} a^{13} - \frac{1}{2} a^{7} - \frac{1}{2} a^{4} - \frac{1}{2} a^{2}$, $\frac{1}{134} a^{14} - \frac{5}{134} a^{13} + \frac{15}{134} a^{12} - \frac{2}{67} a^{11} - \frac{19}{134} a^{10} - \frac{5}{134} a^{9} - \frac{17}{134} a^{8} + \frac{11}{134} a^{7} + \frac{18}{67} a^{6} - \frac{8}{67} a^{5} - \frac{3}{67} a^{4} + \frac{57}{134} a^{3} + \frac{32}{67} a^{2} - \frac{45}{134} a$, $\frac{1}{21392949964027742802226053417385542207735094720862} a^{15} - \frac{36486283269873808100525319257158155130844105348}{10696474982013871401113026708692771103867547360431} a^{14} + \frac{48213982927163387734983030392960375711706289264}{10696474982013871401113026708692771103867547360431} a^{13} + \frac{2418668400620979177093133066272666454322869744295}{10696474982013871401113026708692771103867547360431} a^{12} + \frac{1377534986635436538044838841798471478282127485945}{10696474982013871401113026708692771103867547360431} a^{11} + \frac{2298385768187812238632512539519794981898151544431}{10696474982013871401113026708692771103867547360431} a^{10} + \frac{2558029576980003609189374848213820135106885040649}{10696474982013871401113026708692771103867547360431} a^{9} - \frac{827024382907866901165267256742404775658757933264}{10696474982013871401113026708692771103867547360431} a^{8} + \frac{4180905760917233050899685601344701235740095710475}{21392949964027742802226053417385542207735094720862} a^{7} + \frac{1015031378779169744233404310642970754327062719707}{21392949964027742802226053417385542207735094720862} a^{6} - \frac{27357856555852714517015053113452854091985172457}{21392949964027742802226053417385542207735094720862} a^{5} - \frac{1136094770853714998747264432733760367657147053443}{21392949964027742802226053417385542207735094720862} a^{4} + \frac{3392445872398201145692113608375310363536816634809}{10696474982013871401113026708692771103867547360431} a^{3} - \frac{2686044947377331837605444899716114874515583072611}{10696474982013871401113026708692771103867547360431} a^{2} + \frac{2078184699483412981896865227952343562079696458244}{10696474982013871401113026708692771103867547360431} a - \frac{132109672100105644416023737719347868575444212011}{319297760657130489585463483841575256831867085386}$
Class group and class number
$C_{2}\times C_{2}$, which has order $4$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 14299681.4226 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$(C_2\times C_8).D_4$ (as 16T306):
| A solvable group of order 128 |
| The 26 conjugacy class representatives for $(C_2\times C_8).D_4$ |
| Character table for $(C_2\times C_8).D_4$ is not computed |
Intermediate fields
| \(\Q(\sqrt{17}) \), 4.4.4913.1, \(\Q(\zeta_{17})^+\) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.8.0.1}{8} }^{2}$ | $16$ | $16$ | $16$ | $16$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/19.8.0.1}{8} }^{2}$ | $16$ | $16$ | $16$ | $16$ | $16$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ | R | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/59.8.0.1}{8} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 17 | Data not computed | ||||||
| $47$ | 47.4.2.2 | $x^{4} - 47 x^{2} + 28717$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ |
| 47.4.0.1 | $x^{4} - x + 39$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 47.4.2.2 | $x^{4} - 47 x^{2} + 28717$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 47.4.2.2 | $x^{4} - 47 x^{2} + 28717$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |