Normalized defining polynomial
\( x^{16} + 16 x^{14} - 16 x^{13} + 28 x^{12} - 432 x^{11} - 432 x^{10} - 1632 x^{9} - 1876 x^{8} + 2176 x^{7} + 9776 x^{6} + 9536 x^{5} + 40112 x^{4} + 12480 x^{3} - 1536 x^{2} + 14848 x - 4216 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[4, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(3007692940260731871482085376=2^{64}\cdot 113^{4}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $52.17$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 113$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{2} a^{6}$, $\frac{1}{2} a^{7}$, $\frac{1}{2} a^{8}$, $\frac{1}{2} a^{9}$, $\frac{1}{2} a^{10}$, $\frac{1}{4} a^{11}$, $\frac{1}{4} a^{12}$, $\frac{1}{4} a^{13}$, $\frac{1}{68} a^{14} - \frac{1}{34} a^{13} + \frac{1}{34} a^{12} - \frac{1}{68} a^{11} - \frac{3}{34} a^{10} + \frac{3}{34} a^{9} + \frac{1}{17} a^{8} - \frac{7}{34} a^{7} - \frac{4}{17} a^{6} + \frac{3}{17} a^{5} - \frac{6}{17} a^{4} - \frac{4}{17} a^{3} - \frac{5}{17} a^{2} + \frac{6}{17} a$, $\frac{1}{156706575452695692733468437931396} a^{15} + \frac{217691664054756074278709115252}{39176643863173923183367109482849} a^{14} - \frac{137662478718202419683996120324}{2304508462539642540198065263697} a^{13} + \frac{17270470556202129047027969255501}{156706575452695692733468437931396} a^{12} - \frac{18498523887303917515027768598121}{156706575452695692733468437931396} a^{11} + \frac{209492922269900577493134651161}{4609016925079285080396130527394} a^{10} - \frac{12614593958744668083186293150931}{78353287726347846366734218965698} a^{9} + \frac{5568470456417918517836205984993}{78353287726347846366734218965698} a^{8} - \frac{2745618998726225332795742758423}{78353287726347846366734218965698} a^{7} + \frac{8961507882653332150175406659292}{39176643863173923183367109482849} a^{6} - \frac{5796214640097964900128862711717}{39176643863173923183367109482849} a^{5} - \frac{7965058102731091463786944394599}{39176643863173923183367109482849} a^{4} - \frac{1460387532589043343586000499362}{39176643863173923183367109482849} a^{3} - \frac{19166708452332817620907637119193}{39176643863173923183367109482849} a^{2} - \frac{13843611372751506939433463066965}{39176643863173923183367109482849} a + \frac{815311548585983516530932522021}{2304508462539642540198065263697}$
Class group and class number
$C_{2}$, which has order $2$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 29801511.0477 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 1024 |
| The 43 conjugacy class representatives for t16n1161 |
| Character table for t16n1161 is not computed |
Intermediate fields
| \(\Q(\sqrt{2}) \), \(\Q(\zeta_{16})^+\), 8.8.242665652224.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/5.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/7.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/11.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/13.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/17.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{8}$ | ${\href{/LocalNumberField/19.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/59.8.0.1}{8} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 113 | Data not computed | ||||||