Normalized defining polynomial
\( x^{16} + 11x^{14} + 39x^{12} + 42x^{10} - 21x^{8} - 46x^{6} - 4x^{4} + 8x^{2} + 1 \)
Invariants
| Degree: | $16$ |
| |
| Signature: | $[4, 6]$ |
| |
| Discriminant: |
\(290029415062500000000\)
\(\medspace = 2^{8}\cdot 3^{8}\cdot 5^{12}\cdot 29^{4}\)
|
| |
| Root discriminant: | \(19.01\) |
| |
| Galois root discriminant: | $2^{3/2}3^{1/2}5^{3/4}29^{1/2}\approx 88.21290473450735$ | ||
| Ramified primes: |
\(2\), \(3\), \(5\), \(29\)
|
| |
| Discriminant root field: | \(\Q\) | ||
| $\Aut(K/\Q)$: | $C_4$ |
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
| This field has no CM subfields. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{2}a^{12}-\frac{1}{2}a^{11}-\frac{1}{2}a^{10}-\frac{1}{2}a^{9}-\frac{1}{2}a^{8}-\frac{1}{2}a^{6}-\frac{1}{2}a^{5}-\frac{1}{2}a-\frac{1}{2}$, $\frac{1}{2}a^{13}-\frac{1}{2}a^{8}-\frac{1}{2}a^{7}-\frac{1}{2}a^{5}-\frac{1}{2}a^{2}-\frac{1}{2}$, $\frac{1}{1142}a^{14}-\frac{68}{571}a^{12}+\frac{23}{571}a^{10}-\frac{1}{2}a^{9}-\frac{439}{1142}a^{8}-\frac{11}{1142}a^{6}-\frac{71}{571}a^{4}-\frac{1}{2}a^{3}+\frac{157}{571}a^{2}-\frac{1}{2}a-\frac{235}{571}$, $\frac{1}{1142}a^{15}-\frac{68}{571}a^{13}+\frac{23}{571}a^{11}-\frac{1}{2}a^{10}-\frac{439}{1142}a^{9}-\frac{11}{1142}a^{7}-\frac{71}{571}a^{5}-\frac{1}{2}a^{4}+\frac{157}{571}a^{3}-\frac{1}{2}a^{2}-\frac{235}{571}a$
| Monogenic: | Not computed | |
| Index: | $1$ | |
| Inessential primes: | None |
Class group and class number
| Ideal class group: | Trivial group, which has order $1$ |
| |
| Narrow class group: | $C_{2}$, which has order $2$ |
|
Unit group
| Rank: | $9$ |
| |
| Torsion generator: |
\( -1 \)
(order $2$)
|
| |
| Fundamental units: |
$\frac{70}{571}a^{14}+\frac{758}{571}a^{12}+\frac{2649}{571}a^{10}+\frac{2959}{571}a^{8}-\frac{770}{571}a^{6}-\frac{3088}{571}a^{4}-\frac{1431}{571}a^{2}+\frac{789}{571}$, $\frac{370}{571}a^{15}+\frac{3925}{571}a^{13}+\frac{13023}{571}a^{11}+\frac{11725}{571}a^{9}-\frac{8638}{571}a^{7}-\frac{11428}{571}a^{5}+\frac{267}{571}a^{3}+\frac{1397}{571}a$, $a$, $\frac{148}{571}a^{14}+\frac{1570}{571}a^{12}+\frac{5095}{571}a^{10}+\frac{3548}{571}a^{8}-\frac{6767}{571}a^{6}-\frac{6170}{571}a^{4}+\frac{3076}{571}a^{2}+\frac{673}{571}$, $\frac{373}{1142}a^{15}+\frac{153}{1142}a^{14}+\frac{2044}{571}a^{13}+\frac{1461}{1142}a^{12}+\frac{14303}{1142}a^{11}+\frac{1806}{571}a^{10}+\frac{14405}{1142}a^{9}-\frac{751}{571}a^{8}-\frac{9813}{1142}a^{7}-\frac{5695}{571}a^{6}-\frac{15851}{1142}a^{5}-\frac{5167}{1142}a^{4}+\frac{2351}{1142}a^{3}+\frac{4075}{1142}a^{2}+\frac{1992}{571}a+\frac{1749}{1142}$, $\frac{76}{571}a^{15}-\frac{567}{1142}a^{14}+\frac{1597}{1142}a^{13}-\frac{5683}{1142}a^{12}+\frac{5279}{1142}a^{11}-\frac{16375}{1142}a^{10}+\frac{2609}{571}a^{9}-\frac{5753}{1142}a^{8}-\frac{1101}{1142}a^{7}+\frac{12540}{571}a^{6}-\frac{1085}{571}a^{5}+\frac{5426}{571}a^{4}-\frac{1949}{1142}a^{3}-\frac{9593}{1142}a^{2}-\frac{889}{571}a-\frac{940}{571}$, $\frac{153}{1142}a^{15}+\frac{435}{1142}a^{14}+\frac{1461}{1142}a^{13}+\frac{2396}{571}a^{12}+\frac{1806}{571}a^{11}+\frac{17155}{1142}a^{10}-\frac{751}{571}a^{9}+\frac{9867}{571}a^{8}-\frac{5695}{571}a^{7}-\frac{4785}{1142}a^{6}-\frac{5167}{1142}a^{5}-\frac{15519}{1142}a^{4}+\frac{4075}{1142}a^{3}-\frac{796}{571}a^{2}+\frac{1749}{1142}a+\frac{1681}{1142}$, $\frac{300}{571}a^{14}+\frac{3167}{571}a^{12}+\frac{10374}{571}a^{10}+\frac{8766}{571}a^{8}-\frac{7868}{571}a^{6}-\frac{8340}{571}a^{4}+\frac{1698}{571}a^{2}+\frac{37}{571}$, $\frac{518}{571}a^{15}+\frac{5495}{571}a^{13}+\frac{18118}{571}a^{11}+\frac{15273}{571}a^{9}-\frac{15405}{571}a^{7}-\frac{17598}{571}a^{5}+\frac{3343}{571}a^{3}+\frac{2070}{571}a$
|
| |
| Regulator: | \( 6845.02782643 \) |
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{4}\cdot(2\pi)^{6}\cdot 6845.02782643 \cdot 1}{2\cdot\sqrt{290029415062500000000}}\cr\approx \mathstrut & 0.197844231318 \end{aligned}\]
Galois group
$D_4^2:C_4$ (as 16T610):
| A solvable group of order 256 |
| The 40 conjugacy class representatives for $D_4^2:C_4$ |
| Character table for $D_4^2:C_4$ |
Intermediate fields
| \(\Q(\sqrt{5}) \), 4.4.32625.1, \(\Q(\zeta_{15})^+\), 4.4.725.1, 8.8.1064390625.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 16 siblings: | data not computed |
| Degree 32 siblings: | data not computed |
| Minimal sibling: | 16.0.36665447040000000000.3 |
Frobenius cycle types
| $p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | ${\href{/padicField/7.8.0.1}{8} }^{2}$ | ${\href{/padicField/11.4.0.1}{4} }^{2}{,}\,{\href{/padicField/11.2.0.1}{2} }^{4}$ | ${\href{/padicField/13.4.0.1}{4} }^{4}$ | ${\href{/padicField/17.8.0.1}{8} }^{2}$ | ${\href{/padicField/19.4.0.1}{4} }^{4}$ | ${\href{/padicField/23.8.0.1}{8} }^{2}$ | R | ${\href{/padicField/31.2.0.1}{2} }^{6}{,}\,{\href{/padicField/31.1.0.1}{1} }^{4}$ | ${\href{/padicField/37.8.0.1}{8} }^{2}$ | ${\href{/padicField/41.4.0.1}{4} }^{4}$ | ${\href{/padicField/43.8.0.1}{8} }^{2}$ | ${\href{/padicField/47.8.0.1}{8} }^{2}$ | ${\href{/padicField/53.4.0.1}{4} }^{4}$ | ${\href{/padicField/59.4.0.1}{4} }^{2}{,}\,{\href{/padicField/59.2.0.1}{2} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
|
\(2\)
| 2.4.2.8a3.2 | $x^{8} + 2 x^{6} + 4 x^{5} + 2 x^{4} + 2 x^{3} + 5 x^{2} + 8 x + 3$ | $2$ | $4$ | $8$ | $C_8:C_2$ | $$[2, 2]^{4}$$ |
| 2.8.1.0a1.1 | $x^{8} + x^{4} + x^{3} + x^{2} + 1$ | $1$ | $8$ | $0$ | $C_8$ | $$[\ ]^{8}$$ | |
|
\(3\)
| 3.8.2.8a1.2 | $x^{16} + 4 x^{13} + 2 x^{12} + 8 x^{10} + 8 x^{9} + 5 x^{8} + 8 x^{7} + 12 x^{6} + 12 x^{5} + 8 x^{4} + 8 x^{3} + 12 x^{2} + 8 x + 7$ | $2$ | $8$ | $8$ | $C_8\times C_2$ | $$[\ ]_{2}^{8}$$ |
|
\(5\)
| 5.4.4.12a1.4 | $x^{16} + 16 x^{14} + 16 x^{13} + 104 x^{12} + 192 x^{11} + 448 x^{10} + 864 x^{9} + 1432 x^{8} + 2048 x^{7} + 2624 x^{6} + 2752 x^{5} + 2208 x^{4} + 1280 x^{3} + 512 x^{2} + 128 x + 21$ | $4$ | $4$ | $12$ | $C_4^2$ | $$[\ ]_{4}^{4}$$ |
|
\(29\)
| 29.2.1.0a1.1 | $x^{2} + 24 x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $$[\ ]^{2}$$ |
| 29.1.2.1a1.2 | $x^{2} + 58$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ | |
| 29.2.1.0a1.1 | $x^{2} + 24 x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $$[\ ]^{2}$$ | |
| 29.1.2.1a1.2 | $x^{2} + 58$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ | |
| 29.1.2.1a1.2 | $x^{2} + 58$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ | |
| 29.2.1.0a1.1 | $x^{2} + 24 x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $$[\ ]^{2}$$ | |
| 29.1.2.1a1.2 | $x^{2} + 58$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ | |
| 29.2.1.0a1.1 | $x^{2} + 24 x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $$[\ ]^{2}$$ |