Normalized defining polynomial
\( x^{16} + 44 x^{14} + 580 x^{12} + 4422 x^{10} + 24772 x^{8} - 101684 x^{6} - 1604663 x^{4} + 147840 x^{2} + 4096 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[4, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(28643813255402702732772283462081=11^{4}\cdot 89^{14}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $92.48$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $11, 89$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{2} a^{4} - \frac{1}{2} a$, $\frac{1}{2} a^{5} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{6} - \frac{1}{2} a^{3}$, $\frac{1}{4} a^{7} - \frac{1}{4} a$, $\frac{1}{4} a^{8} - \frac{1}{4} a^{2}$, $\frac{1}{8} a^{9} - \frac{1}{8} a^{8} - \frac{1}{8} a^{7} + \frac{3}{8} a^{3} - \frac{3}{8} a^{2} - \frac{3}{8} a$, $\frac{1}{8} a^{10} - \frac{1}{8} a^{7} - \frac{1}{8} a^{4} + \frac{1}{8} a$, $\frac{1}{16} a^{11} - \frac{1}{16} a^{9} - \frac{1}{8} a^{8} - \frac{1}{16} a^{7} + \frac{3}{16} a^{5} - \frac{3}{16} a^{3} + \frac{1}{8} a^{2} + \frac{5}{16} a - \frac{1}{2}$, $\frac{1}{16} a^{12} - \frac{1}{16} a^{10} + \frac{1}{16} a^{8} - \frac{1}{8} a^{7} + \frac{3}{16} a^{6} - \frac{3}{16} a^{4} - \frac{1}{2} a^{3} - \frac{5}{16} a^{2} + \frac{1}{8} a$, $\frac{1}{32} a^{13} - \frac{1}{32} a^{12} - \frac{1}{32} a^{11} - \frac{1}{32} a^{10} - \frac{1}{32} a^{9} - \frac{1}{32} a^{8} + \frac{1}{32} a^{7} + \frac{5}{32} a^{6} + \frac{5}{32} a^{5} + \frac{5}{32} a^{4} - \frac{11}{32} a^{3} + \frac{5}{32} a^{2} + \frac{1}{16} a - \frac{1}{2}$, $\frac{1}{13032149914814833664} a^{14} - \frac{4113331812106245}{3258037478703708416} a^{12} - \frac{128050311591693263}{3258037478703708416} a^{10} - \frac{310832377257056925}{6516074957407416832} a^{8} - \frac{513173117911182223}{3258037478703708416} a^{6} - \frac{491931643021839469}{3258037478703708416} a^{4} + \frac{5580725891160775753}{13032149914814833664} a^{2} - \frac{27114345200436613}{203627342418981776}$, $\frac{1}{208514398637037338624} a^{15} - \frac{1}{26064299829629667328} a^{14} - \frac{411368016650069797}{52128599659259334656} a^{13} + \frac{4113331812106245}{6516074957407416832} a^{12} + \frac{279204373246270289}{52128599659259334656} a^{11} + \frac{128050311591693263}{6516074957407416832} a^{10} + \frac{5390733210474432803}{104257199318518669312} a^{9} - \frac{1318186362094797283}{13032149914814833664} a^{8} + \frac{1523100306278635537}{52128599659259334656} a^{7} + \frac{513173117911182223}{6516074957407416832} a^{6} - \frac{12302317503322782477}{52128599659259334656} a^{5} + \frac{491931643021839469}{6516074957407416832} a^{4} - \frac{103563529645413456183}{208514398637037338624} a^{3} + \frac{10709461502357766327}{26064299829629667328} a^{2} + \frac{176512997218545163}{3258037478703708416} a - \frac{176512997218545163}{407254684837963552}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 16780906748.7 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^5.C_2.C_2$ (as 16T257):
| A solvable group of order 128 |
| The 26 conjugacy class representatives for $C_2^5.C_2.C_2$ |
| Character table for $C_2^5.C_2.C_2$ is not computed |
Intermediate fields
| \(\Q(\sqrt{89}) \), 4.4.704969.1, 8.4.5351991522359009.1, 8.2.5466794200571.1, 8.6.486544683850819.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/5.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}$ | R | ${\href{/LocalNumberField/13.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/19.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/31.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/41.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/59.8.0.1}{8} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $11$ | 11.2.0.1 | $x^{2} - x + 7$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 11.2.1.1 | $x^{2} - 11$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 11.2.0.1 | $x^{2} - x + 7$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 11.2.0.1 | $x^{2} - x + 7$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 11.2.1.1 | $x^{2} - 11$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 11.2.0.1 | $x^{2} - x + 7$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 11.4.2.1 | $x^{4} + 143 x^{2} + 5929$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| $89$ | 89.8.7.3 | $x^{8} - 7209$ | $8$ | $1$ | $7$ | $C_8$ | $[\ ]_{8}$ |
| 89.8.7.3 | $x^{8} - 7209$ | $8$ | $1$ | $7$ | $C_8$ | $[\ ]_{8}$ |