Normalized defining polynomial
\( x^{16} - 3 x^{15} + 3 x^{14} - 9 x^{13} + 7 x^{12} - 15 x^{11} + 27 x^{10} - 3 x^{9} - 15 x^{8} + \cdots + 1 \)
Invariants
| Degree: | $16$ |
| |
| Signature: | $[4, 6]$ |
| |
| Discriminant: |
\(2837698174072265625\)
\(\medspace = 3^{8}\cdot 5^{12}\cdot 11^{6}\)
|
| |
| Root discriminant: | \(14.23\) |
| |
| Galois root discriminant: | $3^{1/2}5^{3/4}11^{1/2}\approx 19.208102881010017$ | ||
| Ramified primes: |
\(3\), \(5\), \(11\)
|
| |
| Discriminant root field: | \(\Q\) | ||
| $\Aut(K/\Q)$: | $C_4$ |
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
| This field has no CM subfields. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{3}a^{8}-\frac{1}{3}a^{4}+\frac{1}{3}$, $\frac{1}{3}a^{9}-\frac{1}{3}a^{5}+\frac{1}{3}a$, $\frac{1}{3}a^{10}-\frac{1}{3}a^{6}+\frac{1}{3}a^{2}$, $\frac{1}{3}a^{11}-\frac{1}{3}a^{7}+\frac{1}{3}a^{3}$, $\frac{1}{9}a^{12}-\frac{1}{3}a^{7}+\frac{1}{3}a^{5}-\frac{1}{3}a^{3}+\frac{1}{3}a+\frac{1}{9}$, $\frac{1}{9}a^{13}+\frac{1}{3}a^{6}+\frac{1}{3}a^{4}+\frac{1}{3}a^{2}+\frac{1}{9}a+\frac{1}{3}$, $\frac{1}{5841}a^{14}-\frac{71}{5841}a^{13}+\frac{287}{5841}a^{12}-\frac{211}{1947}a^{11}+\frac{193}{1947}a^{10}+\frac{62}{1947}a^{9}+\frac{13}{177}a^{8}+\frac{199}{649}a^{7}+\frac{24}{59}a^{6}-\frac{587}{1947}a^{5}+\frac{842}{1947}a^{4}-\frac{860}{1947}a^{3}-\frac{362}{5841}a^{2}-\frac{2018}{5841}a-\frac{1297}{5841}$, $\frac{1}{5841}a^{15}-\frac{211}{5841}a^{13}+\frac{274}{5841}a^{12}+\frac{139}{1947}a^{11}+\frac{136}{1947}a^{10}+\frac{2}{1947}a^{9}-\frac{283}{1947}a^{8}-\frac{953}{1947}a^{7}-\frac{169}{1947}a^{6}+\frac{701}{1947}a^{5}+\frac{512}{1947}a^{4}+\frac{1423}{5841}a^{3}-\frac{73}{177}a^{2}-\frac{1795}{5841}a-\frac{2525}{5841}$
| Monogenic: | No | |
| Index: | Not computed | |
| Inessential primes: | $3$ |
Class group and class number
| Ideal class group: | Trivial group, which has order $1$ (assuming GRH) |
| |
| Narrow class group: | $C_{2}$, which has order $2$ (assuming GRH) |
|
Unit group
| Rank: | $9$ |
| |
| Torsion generator: |
\( -1 \)
(order $2$)
|
| |
| Fundamental units: |
$\frac{2110}{5841}a^{15}-\frac{5200}{5841}a^{14}+\frac{347}{531}a^{13}-\frac{1999}{649}a^{12}+\frac{2279}{1947}a^{11}-\frac{10528}{1947}a^{10}+\frac{4919}{649}a^{9}+\frac{3349}{1947}a^{8}-\frac{1668}{649}a^{7}-\frac{2641}{649}a^{6}+\frac{15119}{1947}a^{5}-\frac{511}{1947}a^{4}+\frac{20896}{5841}a^{3}-\frac{19192}{5841}a^{2}+\frac{62}{531}a-\frac{1337}{1947}$, $\frac{1204}{5841}a^{15}-\frac{1108}{1947}a^{14}+\frac{248}{531}a^{13}-\frac{3163}{1947}a^{12}+\frac{552}{649}a^{11}-\frac{1772}{649}a^{10}+\frac{8543}{1947}a^{9}+\frac{1027}{1947}a^{8}-\frac{2518}{649}a^{7}-\frac{1252}{1947}a^{6}+\frac{14227}{1947}a^{5}-\frac{5614}{1947}a^{4}-\frac{2630}{5841}a^{3}+\frac{1510}{1947}a^{2}+\frac{332}{531}a-\frac{534}{649}$, $\frac{1498}{5841}a^{15}-\frac{370}{649}a^{14}+\frac{2126}{5841}a^{13}-\frac{13078}{5841}a^{12}+\frac{318}{649}a^{11}-\frac{8026}{1947}a^{10}+\frac{3136}{649}a^{9}+\frac{3284}{1947}a^{8}-\frac{566}{1947}a^{7}-\frac{7664}{1947}a^{6}+\frac{6428}{1947}a^{5}+\frac{1625}{1947}a^{4}+\frac{18448}{5841}a^{3}-\frac{7996}{1947}a^{2}+\frac{4634}{5841}a-\frac{6004}{5841}$, $a$, $\frac{398}{5841}a^{15}-\frac{131}{5841}a^{14}-\frac{691}{5841}a^{13}-\frac{3829}{5841}a^{12}-\frac{469}{649}a^{11}-\frac{2956}{1947}a^{10}-\frac{17}{177}a^{9}+\frac{3625}{1947}a^{8}+\frac{535}{177}a^{7}-\frac{2923}{1947}a^{6}-\frac{4949}{1947}a^{5}+\frac{5210}{1947}a^{4}+\frac{18449}{5841}a^{3}-\frac{2111}{5841}a^{2}-\frac{137}{99}a-\frac{275}{531}$, $\frac{530}{5841}a^{15}-\frac{2228}{5841}a^{14}+\frac{3524}{5841}a^{13}-\frac{6817}{5841}a^{12}+\frac{3161}{1947}a^{11}-\frac{4219}{1947}a^{10}+\frac{8300}{1947}a^{9}-\frac{5857}{1947}a^{8}-\frac{161}{649}a^{7}+\frac{3941}{1947}a^{6}+\frac{6244}{1947}a^{5}-\frac{9374}{1947}a^{4}+\frac{658}{531}a^{3}-\frac{10742}{5841}a^{2}+\frac{3161}{5841}a-\frac{1591}{5841}$, $\frac{1280}{5841}a^{15}-\frac{1390}{5841}a^{14}-\frac{2650}{5841}a^{13}-\frac{6025}{5841}a^{12}-\frac{1286}{649}a^{11}-\frac{1110}{649}a^{10}-\frac{548}{1947}a^{9}+\frac{15302}{1947}a^{8}-\frac{1557}{649}a^{7}-\frac{12710}{1947}a^{6}+\frac{3195}{649}a^{5}+\frac{1442}{177}a^{4}-\frac{16702}{5841}a^{3}-\frac{2512}{5841}a^{2}-\frac{5290}{5841}a+\frac{7067}{5841}$, $\frac{740}{5841}a^{15}-\frac{2173}{5841}a^{14}+\frac{739}{5841}a^{13}-\frac{2935}{5841}a^{12}+\frac{19}{59}a^{11}-\frac{30}{649}a^{10}+\frac{4991}{1947}a^{9}+\frac{5531}{1947}a^{8}-\frac{4006}{649}a^{7}-\frac{972}{649}a^{6}+\frac{16031}{1947}a^{5}-\frac{1172}{649}a^{4}-\frac{32479}{5841}a^{3}+\frac{8618}{5841}a^{2}+\frac{2620}{5841}a-\frac{2851}{5841}$, $\frac{5222}{5841}a^{15}-\frac{14122}{5841}a^{14}+\frac{1311}{649}a^{13}-\frac{43060}{5841}a^{12}+\frac{6949}{1947}a^{11}-\frac{2143}{177}a^{10}+\frac{36341}{1947}a^{9}+\frac{6679}{1947}a^{8}-\frac{29563}{1947}a^{7}-\frac{3530}{1947}a^{6}+\frac{41735}{1947}a^{5}-\frac{6261}{649}a^{4}+\frac{32855}{5841}a^{3}-\frac{14518}{5841}a^{2}-\frac{724}{649}a-\frac{2257}{5841}$
|
| |
| Regulator: | \( 795.712721841 \) (assuming GRH) |
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{4}\cdot(2\pi)^{6}\cdot 795.712721841 \cdot 1}{2\cdot\sqrt{2837698174072265625}}\cr\approx \mathstrut & 0.232510408075 \end{aligned}\] (assuming GRH)
Galois group
$C_4\wr C_2$ (as 16T28):
| A solvable group of order 32 |
| The 14 conjugacy class representatives for $C_4\wr C_2$ |
| Character table for $C_4\wr C_2$ |
Intermediate fields
| \(\Q(\sqrt{5}) \), 4.2.275.1, \(\Q(\zeta_{15})^+\), 4.2.12375.1, 8.4.153140625.2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | deg 32 |
| Degree 8 siblings: | 8.0.16471125.2, 8.0.411778125.2 |
| Degree 16 sibling: | 16.0.169561224228515625.2 |
| Minimal sibling: | 8.0.16471125.2 |
Frobenius cycle types
| $p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/padicField/2.8.0.1}{8} }^{2}$ | R | R | ${\href{/padicField/7.8.0.1}{8} }^{2}$ | R | ${\href{/padicField/13.8.0.1}{8} }^{2}$ | ${\href{/padicField/17.8.0.1}{8} }^{2}$ | ${\href{/padicField/19.4.0.1}{4} }^{4}$ | ${\href{/padicField/23.4.0.1}{4} }^{4}$ | ${\href{/padicField/29.2.0.1}{2} }^{6}{,}\,{\href{/padicField/29.1.0.1}{1} }^{4}$ | ${\href{/padicField/31.4.0.1}{4} }^{4}$ | ${\href{/padicField/37.4.0.1}{4} }^{4}$ | ${\href{/padicField/41.4.0.1}{4} }^{4}$ | ${\href{/padicField/43.8.0.1}{8} }^{2}$ | ${\href{/padicField/47.4.0.1}{4} }^{4}$ | ${\href{/padicField/53.4.0.1}{4} }^{4}$ | ${\href{/padicField/59.2.0.1}{2} }^{8}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
|
\(3\)
| 3.2.2.2a1.1 | $x^{4} + 4 x^{3} + 8 x^{2} + 11 x + 4$ | $2$ | $2$ | $2$ | $C_4$ | $$[\ ]_{2}^{2}$$ |
| 3.2.2.2a1.1 | $x^{4} + 4 x^{3} + 8 x^{2} + 11 x + 4$ | $2$ | $2$ | $2$ | $C_4$ | $$[\ ]_{2}^{2}$$ | |
| 3.2.2.2a1.1 | $x^{4} + 4 x^{3} + 8 x^{2} + 11 x + 4$ | $2$ | $2$ | $2$ | $C_4$ | $$[\ ]_{2}^{2}$$ | |
| 3.2.2.2a1.1 | $x^{4} + 4 x^{3} + 8 x^{2} + 11 x + 4$ | $2$ | $2$ | $2$ | $C_4$ | $$[\ ]_{2}^{2}$$ | |
|
\(5\)
| 5.4.4.12a1.4 | $x^{16} + 16 x^{14} + 16 x^{13} + 104 x^{12} + 192 x^{11} + 448 x^{10} + 864 x^{9} + 1432 x^{8} + 2048 x^{7} + 2624 x^{6} + 2752 x^{5} + 2208 x^{4} + 1280 x^{3} + 512 x^{2} + 128 x + 21$ | $4$ | $4$ | $12$ | $C_4^2$ | $$[\ ]_{4}^{4}$$ |
|
\(11\)
| 11.4.1.0a1.1 | $x^{4} + 8 x^{2} + 10 x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $$[\ ]^{4}$$ |
| 11.2.2.2a1.1 | $x^{4} + 14 x^{3} + 53 x^{2} + 39 x + 4$ | $2$ | $2$ | $2$ | $C_4$ | $$[\ ]_{2}^{2}$$ | |
| 11.4.2.4a1.2 | $x^{8} + 16 x^{6} + 20 x^{5} + 68 x^{4} + 160 x^{3} + 132 x^{2} + 40 x + 15$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $$[\ ]_{2}^{4}$$ |