Normalized defining polynomial
\( x^{16} + 16x^{14} + 26x^{12} - 260x^{10} - 849x^{8} - 36x^{6} + 2202x^{4} + 1972x^{2} + 289 \)
Invariants
| Degree: | $16$ |
| |
| Signature: | $[4, 6]$ |
| |
| Discriminant: |
\(2786014518176517344722944\)
\(\medspace = 2^{44}\cdot 3^{8}\cdot 17^{6}\)
|
| |
| Root discriminant: | \(33.71\) |
| |
| Galois root discriminant: | $2^{51/16}3^{1/2}17^{1/2}\approx 65.0606202428235$ | ||
| Ramified primes: |
\(2\), \(3\), \(17\)
|
| |
| Discriminant root field: | \(\Q\) | ||
| $\Aut(K/\Q)$: | $C_2$ |
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
| This field has no CM subfields. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{2}a^{8}-\frac{1}{2}a^{4}-\frac{1}{2}$, $\frac{1}{2}a^{9}-\frac{1}{2}a^{5}-\frac{1}{2}a$, $\frac{1}{4}a^{10}-\frac{1}{4}a^{9}-\frac{1}{4}a^{8}-\frac{1}{2}a^{7}+\frac{1}{4}a^{6}+\frac{1}{4}a^{5}-\frac{1}{4}a^{4}-\frac{1}{4}a^{2}+\frac{1}{4}a-\frac{1}{4}$, $\frac{1}{4}a^{11}-\frac{1}{4}a^{8}-\frac{1}{4}a^{7}-\frac{1}{2}a^{6}-\frac{1}{2}a^{5}+\frac{1}{4}a^{4}-\frac{1}{4}a^{3}-\frac{1}{2}a+\frac{1}{4}$, $\frac{1}{20}a^{12}-\frac{1}{10}a^{10}-\frac{1}{4}a^{9}-\frac{1}{20}a^{8}-\frac{1}{2}a^{7}+\frac{1}{5}a^{6}+\frac{1}{4}a^{5}+\frac{7}{20}a^{4}-\frac{1}{5}a^{2}+\frac{1}{4}a+\frac{2}{5}$, $\frac{1}{20}a^{13}-\frac{1}{10}a^{11}+\frac{1}{5}a^{9}-\frac{1}{4}a^{8}-\frac{3}{10}a^{7}-\frac{1}{2}a^{6}+\frac{1}{10}a^{5}+\frac{1}{4}a^{4}-\frac{1}{5}a^{3}+\frac{3}{20}a+\frac{1}{4}$, $\frac{1}{11350220}a^{14}-\frac{4017}{1621460}a^{12}+\frac{146317}{2837555}a^{10}-\frac{2453819}{11350220}a^{8}-\frac{162864}{2837555}a^{6}+\frac{5486867}{11350220}a^{4}+\frac{3611421}{11350220}a^{2}+\frac{112181}{333830}$, $\frac{1}{11350220}a^{15}-\frac{4017}{1621460}a^{13}+\frac{146317}{2837555}a^{11}-\frac{2453819}{11350220}a^{9}-\frac{162864}{2837555}a^{7}+\frac{5486867}{11350220}a^{5}+\frac{3611421}{11350220}a^{3}+\frac{112181}{333830}a$
| Monogenic: | Not computed | |
| Index: | $1$ | |
| Inessential primes: | None |
Class group and class number
| Ideal class group: | Trivial group, which has order $1$ |
| |
| Narrow class group: | $C_{2}\times C_{2}$, which has order $4$ |
|
Unit group
| Rank: | $9$ |
| |
| Torsion generator: |
\( -1 \)
(order $2$)
|
| |
| Fundamental units: |
$\frac{865307}{2270044}a^{14}+\frac{422029}{81073}a^{12}-\frac{5211525}{2270044}a^{10}-\frac{212920751}{2270044}a^{8}-\frac{235142735}{2270044}a^{6}+\frac{523401783}{2270044}a^{4}+\frac{338470295}{1135022}a^{2}+\frac{6143721}{133532}$, $\frac{983359}{11350220}a^{14}+\frac{478107}{405365}a^{12}-\frac{6482817}{11350220}a^{10}-\frac{241492093}{11350220}a^{8}-\frac{256706211}{11350220}a^{6}+\frac{598446337}{11350220}a^{4}+\frac{372910103}{5675110}a^{2}+\frac{7188771}{667660}$, $\frac{835794}{2837555}a^{14}+\frac{1632038}{405365}a^{12}-\frac{4893702}{2837555}a^{10}-\frac{411555831}{5675110}a^{8}-\frac{229751866}{2837555}a^{6}+\frac{1009281289}{5675110}a^{4}+\frac{659720686}{2837555}a^{2}+\frac{11764917}{333830}$, $\frac{407459}{597380}a^{14}+\frac{199147}{21335}a^{12}-\frac{2307927}{597380}a^{10}-\frac{100510373}{597380}a^{8}-\frac{113282081}{597380}a^{6}+\frac{246197717}{597380}a^{4}+\frac{81377294}{149345}a^{2}+\frac{3027571}{35140}$, $\frac{481108}{2837555}a^{14}+\frac{375871}{162146}a^{12}-\frac{1131855}{1135022}a^{10}-\frac{118856254}{2837555}a^{8}-\frac{52654821}{1135022}a^{6}+\frac{59113580}{567511}a^{4}+\frac{152127259}{1135022}a^{2}+\frac{6092283}{333830}$, $\frac{3053}{1135022}a^{14}+\frac{24439}{1621460}a^{12}-\frac{3256861}{11350220}a^{10}-\frac{626762}{2837555}a^{8}+\frac{46007217}{11350220}a^{6}+\frac{5564509}{2837555}a^{4}-\frac{128178947}{11350220}a^{2}-\frac{453123}{667660}$, $\frac{2976167}{5675110}a^{14}+\frac{11603359}{1621460}a^{12}-\frac{36812061}{11350220}a^{10}-\frac{146555651}{1135022}a^{8}-\frac{1600026123}{11350220}a^{6}+\frac{1816884753}{5675110}a^{4}+\frac{4622691793}{11350220}a^{2}+\frac{39284939}{667660}$, $\frac{1233931}{11350220}a^{15}+\frac{116007}{1621460}a^{14}+\frac{245351}{162146}a^{13}+\frac{334771}{324292}a^{12}-\frac{364393}{2270044}a^{11}+\frac{168849}{324292}a^{10}-\frac{142541089}{5675110}a^{9}-\frac{5874574}{405365}a^{8}-\frac{69282357}{2270044}a^{7}-\frac{6753903}{324292}a^{6}+\frac{64636903}{1135022}a^{5}+\frac{4628597}{162146}a^{4}+\frac{87947563}{1135022}a^{3}+\frac{7113865}{162146}a^{2}+\frac{4208779}{333830}a+\frac{711651}{95380}$, $\frac{107019}{85340}a^{15}+\frac{3967767}{5675110}a^{14}+\frac{1698619}{85340}a^{13}+\frac{21374991}{1621460}a^{12}+\frac{750508}{21335}a^{11}+\frac{146843089}{2837555}a^{10}-\frac{10739403}{42670}a^{9}-\frac{1097447539}{11350220}a^{8}-\frac{39490097}{42670}a^{7}-\frac{5419454921}{5675110}a^{6}-\frac{42853281}{42670}a^{5}-\frac{21525722171}{11350220}a^{4}-\frac{33226821}{85340}a^{3}-\frac{3593191302}{2837555}a^{2}-\frac{231637}{5020}a-\frac{11899497}{66766}$
|
| |
| Regulator: | \( 833924.759268 \) |
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{4}\cdot(2\pi)^{6}\cdot 833924.759268 \cdot 1}{2\cdot\sqrt{2786014518176517344722944}}\cr\approx \mathstrut & 0.245925961354 \end{aligned}\]
Galois group
$C_2^4.D_4^2$ (as 16T1228):
| A solvable group of order 1024 |
| The 61 conjugacy class representatives for $C_2^4.D_4^2$ |
| Character table for $C_2^4.D_4^2$ |
Intermediate fields
| \(\Q(\sqrt{2}) \), \(\Q(\sqrt{6}) \), \(\Q(\sqrt{3}) \), 4.4.9792.1, 4.4.4352.1, \(\Q(\sqrt{2}, \sqrt{3})\), 8.8.1534132224.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 16 siblings: | data not computed |
| Degree 32 siblings: | data not computed |
| Minimal sibling: | 16.8.2786014518176517344722944.3 |
Frobenius cycle types
| $p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/padicField/5.4.0.1}{4} }^{4}$ | ${\href{/padicField/7.4.0.1}{4} }^{2}{,}\,{\href{/padicField/7.2.0.1}{2} }^{4}$ | ${\href{/padicField/11.8.0.1}{8} }^{2}$ | ${\href{/padicField/13.4.0.1}{4} }^{2}{,}\,{\href{/padicField/13.2.0.1}{2} }^{4}$ | R | ${\href{/padicField/19.4.0.1}{4} }^{2}{,}\,{\href{/padicField/19.2.0.1}{2} }^{4}$ | ${\href{/padicField/23.4.0.1}{4} }{,}\,{\href{/padicField/23.2.0.1}{2} }^{3}{,}\,{\href{/padicField/23.1.0.1}{1} }^{6}$ | ${\href{/padicField/29.4.0.1}{4} }^{4}$ | ${\href{/padicField/31.4.0.1}{4} }^{2}{,}\,{\href{/padicField/31.2.0.1}{2} }^{4}$ | ${\href{/padicField/37.8.0.1}{8} }^{2}$ | ${\href{/padicField/41.2.0.1}{2} }^{8}$ | ${\href{/padicField/43.4.0.1}{4} }^{4}$ | ${\href{/padicField/47.4.0.1}{4} }^{2}{,}\,{\href{/padicField/47.2.0.1}{2} }^{4}$ | ${\href{/padicField/53.4.0.1}{4} }^{2}{,}\,{\href{/padicField/53.2.0.1}{2} }^{4}$ | ${\href{/padicField/59.4.0.1}{4} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
|
\(2\)
| 2.2.8.44d2.60 | $x^{16} + 12 x^{15} + 68 x^{14} + 256 x^{13} + 714 x^{12} + 1564 x^{11} + 2776 x^{10} + 4068 x^{9} + 4973 x^{8} + 5092 x^{7} + 4364 x^{6} + 3108 x^{5} + 1820 x^{4} + 864 x^{3} + 324 x^{2} + 92 x + 17$ | $8$ | $2$ | $44$ | 16T295 | $$[2, 2, 3, \frac{7}{2}, \frac{7}{2}]^{4}$$ |
|
\(3\)
| 3.8.2.8a1.2 | $x^{16} + 4 x^{13} + 2 x^{12} + 8 x^{10} + 8 x^{9} + 5 x^{8} + 8 x^{7} + 12 x^{6} + 12 x^{5} + 8 x^{4} + 8 x^{3} + 12 x^{2} + 8 x + 7$ | $2$ | $8$ | $8$ | $C_8\times C_2$ | $$[\ ]_{2}^{8}$$ |
|
\(17\)
| 17.2.1.0a1.1 | $x^{2} + 16 x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $$[\ ]^{2}$$ |
| 17.2.1.0a1.1 | $x^{2} + 16 x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $$[\ ]^{2}$$ | |
| 17.2.2.2a1.2 | $x^{4} + 32 x^{3} + 262 x^{2} + 96 x + 26$ | $2$ | $2$ | $2$ | $C_2^2$ | $$[\ ]_{2}^{2}$$ | |
| 17.4.2.4a1.2 | $x^{8} + 14 x^{6} + 20 x^{5} + 55 x^{4} + 140 x^{3} + 142 x^{2} + 60 x + 26$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $$[\ ]_{2}^{4}$$ |