Normalized defining polynomial
\( x^{16} - 2 x^{15} - 8 x^{14} + 88 x^{13} - 100 x^{12} - 44 x^{11} + 2124 x^{10} - 52 x^{9} - 7660 x^{8} - 45012 x^{7} - 118016 x^{6} - 230312 x^{5} - 340336 x^{4} - 367600 x^{3} - 284600 x^{2} - 175000 x - 2500 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[4, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(277280164669720467865600000000=2^{28}\cdot 5^{8}\cdot 71^{4}\cdot 101^{4}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $69.21$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 71, 101$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{2} a^{8}$, $\frac{1}{20} a^{9} + \frac{1}{5} a^{7} + \frac{2}{5} a^{6} - \frac{1}{10} a^{5} - \frac{1}{5} a^{4} + \frac{1}{5} a^{3} - \frac{1}{5} a^{2} - \frac{3}{10} a$, $\frac{1}{20} a^{10} + \frac{1}{5} a^{8} + \frac{2}{5} a^{7} - \frac{1}{10} a^{6} - \frac{1}{5} a^{5} + \frac{1}{5} a^{4} - \frac{1}{5} a^{3} - \frac{3}{10} a^{2}$, $\frac{1}{20} a^{11} - \frac{1}{10} a^{8} + \frac{1}{10} a^{7} + \frac{1}{5} a^{6} - \frac{2}{5} a^{5} - \frac{2}{5} a^{4} - \frac{1}{10} a^{3} - \frac{1}{5} a^{2} + \frac{1}{5} a$, $\frac{1}{20} a^{12} + \frac{1}{10} a^{8} - \frac{2}{5} a^{7} + \frac{2}{5} a^{6} + \frac{2}{5} a^{5} - \frac{1}{2} a^{4} + \frac{1}{5} a^{3} - \frac{1}{5} a^{2} + \frac{2}{5} a$, $\frac{1}{20} a^{13} + \frac{1}{10} a^{8} - \frac{2}{5} a^{6} - \frac{3}{10} a^{5} - \frac{2}{5} a^{4} + \frac{2}{5} a^{3} - \frac{1}{5} a^{2} - \frac{2}{5} a$, $\frac{1}{100} a^{14} - \frac{1}{50} a^{13} + \frac{1}{50} a^{12} - \frac{1}{50} a^{11} + \frac{1}{100} a^{9} + \frac{6}{25} a^{8} - \frac{8}{25} a^{7} - \frac{3}{10} a^{6} - \frac{1}{50} a^{5} + \frac{6}{25} a^{4} - \frac{3}{25} a^{3} + \frac{1}{25} a^{2} - \frac{1}{2} a$, $\frac{1}{37731964575322717264056482406146500} a^{15} - \frac{49723855262629659727339336630627}{37731964575322717264056482406146500} a^{14} + \frac{5706699794194239574642067839837}{325275556683816528138417951777125} a^{13} - \frac{897764639621550751964436277657187}{37731964575322717264056482406146500} a^{12} + \frac{18115044011030013116499245418}{10780561307235062075444709258899} a^{11} - \frac{114310663656291779814239344885169}{37731964575322717264056482406146500} a^{10} - \frac{25279551950592884730070963076213}{18865982287661358632028241203073250} a^{9} + \frac{1105483407415230814153221758545787}{9432991143830679316014120601536625} a^{8} + \frac{15421367000997073241412751230201}{130110222673526611255367180710850} a^{7} + \frac{3870184695822643726640397671673247}{9432991143830679316014120601536625} a^{6} - \frac{976232260718392111667258401865129}{9432991143830679316014120601536625} a^{5} - \frac{993622010367479077153445403480533}{2695140326808765518861177314724750} a^{4} - \frac{95412403014613549358887302430996}{325275556683816528138417951777125} a^{3} + \frac{364062522878529997755510130921223}{754639291506454345281129648122930} a^{2} + \frac{6582470104291296293247408327901}{34301785977566106603687711278315} a + \frac{30006901538455467413805260070742}{75463929150645434528112964812293}$
Class group and class number
$C_{2}$, which has order $2$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 238052362.797 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 1024 |
| The 43 conjugacy class representatives for t16n1275 |
| Character table for t16n1275 is not computed |
Intermediate fields
| \(\Q(\sqrt{5}) \), 4.4.28400.1, 8.4.1303400960000.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ | R | ${\href{/LocalNumberField/7.8.0.1}{8} }{,}\,{\href{/LocalNumberField/7.4.0.1}{4} }{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/11.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $5$ | 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| $71$ | 71.2.0.1 | $x^{2} - x + 11$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 71.2.0.1 | $x^{2} - x + 11$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 71.2.1.2 | $x^{2} + 142$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 71.2.1.2 | $x^{2} + 142$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 71.2.1.2 | $x^{2} + 142$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 71.2.0.1 | $x^{2} - x + 11$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 71.2.1.2 | $x^{2} + 142$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 71.2.0.1 | $x^{2} - x + 11$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 101 | Data not computed | ||||||