Properties

Label 16.4.27487790694...0000.1
Degree $16$
Signature $[4, 6]$
Discriminant $2^{46}\cdot 5^{8}$
Root discriminant $16.40$
Ramified primes $2, 5$
Class number $1$
Class group Trivial
Galois group $\GL(2,Z/4)$ (as 16T186)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![2, -16, 48, -56, -32, 192, -276, 192, -29, -68, 70, -40, 23, -16, 10, -4, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^16 - 4*x^15 + 10*x^14 - 16*x^13 + 23*x^12 - 40*x^11 + 70*x^10 - 68*x^9 - 29*x^8 + 192*x^7 - 276*x^6 + 192*x^5 - 32*x^4 - 56*x^3 + 48*x^2 - 16*x + 2)
 
gp: K = bnfinit(x^16 - 4*x^15 + 10*x^14 - 16*x^13 + 23*x^12 - 40*x^11 + 70*x^10 - 68*x^9 - 29*x^8 + 192*x^7 - 276*x^6 + 192*x^5 - 32*x^4 - 56*x^3 + 48*x^2 - 16*x + 2, 1)
 

Normalized defining polynomial

\( x^{16} - 4 x^{15} + 10 x^{14} - 16 x^{13} + 23 x^{12} - 40 x^{11} + 70 x^{10} - 68 x^{9} - 29 x^{8} + 192 x^{7} - 276 x^{6} + 192 x^{5} - 32 x^{4} - 56 x^{3} + 48 x^{2} - 16 x + 2 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $16$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[4, 6]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(27487790694400000000=2^{46}\cdot 5^{8}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $16.40$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $2, 5$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $\frac{1}{33} a^{14} + \frac{13}{33} a^{13} + \frac{16}{33} a^{12} + \frac{2}{33} a^{11} + \frac{16}{33} a^{10} - \frac{4}{33} a^{8} - \frac{4}{33} a^{7} + \frac{4}{33} a^{6} - \frac{2}{33} a^{5} - \frac{5}{11} a^{4} + \frac{4}{33} a^{3} - \frac{2}{11} a^{2} + \frac{5}{33} a + \frac{4}{33}$, $\frac{1}{3399} a^{15} - \frac{2}{3399} a^{14} - \frac{509}{3399} a^{13} - \frac{931}{3399} a^{12} + \frac{118}{3399} a^{11} - \frac{278}{1133} a^{10} + \frac{359}{3399} a^{9} + \frac{650}{3399} a^{8} - \frac{68}{3399} a^{7} - \frac{1283}{3399} a^{6} - \frac{501}{1133} a^{5} + \frac{1615}{3399} a^{4} + \frac{22}{103} a^{3} - \frac{664}{3399} a^{2} - \frac{1589}{3399} a + \frac{343}{1133}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

Trivial group, which has order $1$

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $9$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 5256.45427202 \)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$\GL(2,Z/4)$ (as 16T186):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A solvable group of order 96
The 14 conjugacy class representatives for $\GL(2,Z/4)$
Character table for $\GL(2,Z/4)$

Intermediate fields

\(\Q(\sqrt{2}) \), 4.2.51200.1, 4.2.2048.1, 8.4.2621440000.4

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Degree 12 siblings: 12.2.52428800000000.1, 12.2.52428800000000.2, 12.2.52428800000000.3, 12.0.13107200000000.1
Degree 16 sibling: Deg 16
Degree 24 siblings: data not computed
Degree 32 sibling: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type R ${\href{/LocalNumberField/3.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/3.2.0.1}{2} }^{2}$ R ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/11.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{2}$ ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/17.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{2}$ ${\href{/LocalNumberField/19.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{2}$ ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/29.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/31.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/41.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{2}$ ${\href{/LocalNumberField/43.2.0.1}{2} }^{8}$ ${\href{/LocalNumberField/47.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{4}$ ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/59.2.0.1}{2} }^{8}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$2$2.8.24.38$x^{8} + 14 x^{4} + 8 x^{3} + 4 x^{2} + 8 x + 14$$8$$1$$24$$D_4\times C_2$$[2, 3, 4]^{2}$
2.8.22.9$x^{8} + 2 x^{4} + 4$$4$$2$$22$$D_4\times C_2$$[2, 3, 4]^{2}$
$5$5.4.0.1$x^{4} + x^{2} - 2 x + 2$$1$$4$$0$$C_4$$[\ ]^{4}$
5.12.8.1$x^{12} - 30 x^{9} + 175 x^{6} + 500 x^{3} + 5000$$3$$4$$8$$C_3 : C_4$$[\ ]_{3}^{4}$