Normalized defining polynomial
\( x^{16} - 2 x^{15} + 13 x^{14} - 10 x^{13} + 125 x^{12} - 198 x^{11} + 529 x^{10} - 1845 x^{9} + 374 x^{8} - 13295 x^{7} - 15289 x^{6} - 42171 x^{5} - 52860 x^{4} - 47230 x^{3} - 135503 x^{2} + 182831 x + 278501 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[4, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(26968313608671985107666015625=5^{12}\cdot 101^{10}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $59.83$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $5, 101$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{5} a^{12} - \frac{2}{5} a^{11} + \frac{2}{5} a^{10} + \frac{2}{5} a^{9} - \frac{1}{5} a^{8} - \frac{2}{5} a^{7} + \frac{2}{5} a^{6} - \frac{1}{5} a^{5} + \frac{1}{5} a^{4} - \frac{1}{5} a^{3} + \frac{2}{5} a^{2} - \frac{1}{5} a - \frac{1}{5}$, $\frac{1}{85} a^{13} + \frac{1}{85} a^{12} + \frac{36}{85} a^{11} - \frac{32}{85} a^{10} - \frac{6}{17} a^{9} + \frac{6}{17} a^{8} - \frac{9}{85} a^{7} + \frac{3}{17} a^{6} + \frac{23}{85} a^{5} - \frac{33}{85} a^{4} + \frac{9}{85} a^{3} + \frac{4}{17} a^{2} - \frac{19}{85} a - \frac{8}{85}$, $\frac{1}{3995} a^{14} + \frac{4}{3995} a^{13} - \frac{33}{799} a^{12} + \frac{824}{3995} a^{11} + \frac{23}{85} a^{10} - \frac{1488}{3995} a^{9} + \frac{125}{799} a^{8} - \frac{199}{3995} a^{7} - \frac{2}{47} a^{6} - \frac{360}{799} a^{5} - \frac{209}{3995} a^{4} + \frac{1186}{3995} a^{3} + \frac{1503}{3995} a^{2} + \frac{1584}{3995} a - \frac{287}{799}$, $\frac{1}{13305185061307306065194757411752435} a^{15} - \frac{379621661950059727097439155846}{13305185061307306065194757411752435} a^{14} - \frac{7284177337871389577639209791338}{2661037012261461213038951482350487} a^{13} - \frac{420438487177390644311670599456582}{13305185061307306065194757411752435} a^{12} + \frac{2378239554121016842331007882121273}{13305185061307306065194757411752435} a^{11} + \frac{578338398447587868919453952260575}{2661037012261461213038951482350487} a^{10} + \frac{4534288012467811102455711708240288}{13305185061307306065194757411752435} a^{9} + \frac{4550773194523349959994294850945422}{13305185061307306065194757411752435} a^{8} - \frac{672473643790148513661073529177153}{13305185061307306065194757411752435} a^{7} + \frac{5471185693216123810578027928159988}{13305185061307306065194757411752435} a^{6} - \frac{226057097258751321869391739475441}{578486307013361133269337278771845} a^{5} - \frac{1276321811114950553339045537760854}{2661037012261461213038951482350487} a^{4} - \frac{4276917926156950384980296931065521}{13305185061307306065194757411752435} a^{3} + \frac{1132498243121114281957537105626907}{13305185061307306065194757411752435} a^{2} + \frac{193075943558400068424316185336427}{578486307013361133269337278771845} a - \frac{6283053350728778799825039004186139}{13305185061307306065194757411752435}$
Class group and class number
$C_{2}$, which has order $2$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 53508961.8507 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 512 |
| The 32 conjugacy class representatives for t16n875 |
| Character table for t16n875 is not computed |
Intermediate fields
| \(\Q(\sqrt{5}) \), 4.4.2525.1, 8.4.1625943765625.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/3.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/11.8.0.1}{8} }{,}\,{\href{/LocalNumberField/11.4.0.1}{4} }{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/41.8.0.1}{8} }{,}\,{\href{/LocalNumberField/41.4.0.1}{4} }{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/59.8.0.1}{8} }{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $5$ | 5.8.6.1 | $x^{8} - 5 x^{4} + 400$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ |
| 5.8.6.1 | $x^{8} - 5 x^{4} + 400$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ | |
| 101 | Data not computed | ||||||