Normalized defining polynomial
\( x^{16} - 3 x^{15} + 34 x^{14} - 89 x^{13} + 222 x^{12} - 693 x^{11} - 952 x^{10} + 1446 x^{9} - 5579 x^{8} + 26349 x^{7} + 3333 x^{6} - 71567 x^{5} + 43327 x^{4} + 61869 x^{3} - 95211 x^{2} - 17847 x + 63261 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[4, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(26968313608671985107666015625=5^{12}\cdot 101^{10}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $59.83$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $5, 101$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{5} a^{12} - \frac{2}{5} a^{9} - \frac{1}{5} a^{6} + \frac{2}{5} a^{3} + \frac{1}{5}$, $\frac{1}{15} a^{13} - \frac{1}{3} a^{11} - \frac{2}{15} a^{10} - \frac{1}{15} a^{7} - \frac{1}{3} a^{5} - \frac{1}{5} a^{4} - \frac{1}{3} a^{2} + \frac{1}{15} a$, $\frac{1}{135} a^{14} - \frac{11}{135} a^{12} + \frac{13}{135} a^{11} - \frac{7}{15} a^{9} - \frac{61}{135} a^{8} - \frac{4}{9} a^{7} - \frac{44}{135} a^{6} + \frac{1}{5} a^{5} - \frac{4}{9} a^{4} - \frac{62}{135} a^{3} - \frac{59}{135} a^{2} + \frac{4}{9} a - \frac{4}{15}$, $\frac{1}{1091799351222606327409708370980816395} a^{15} - \frac{607587119380983157847390129115767}{363933117074202109136569456993605465} a^{14} + \frac{26719272455436021082380440250977737}{1091799351222606327409708370980816395} a^{13} - \frac{72572343023403374755726190784098558}{1091799351222606327409708370980816395} a^{12} + \frac{7413074630998203992462025217405909}{363933117074202109136569456993605465} a^{11} + \frac{32913776420297317845675305099249174}{121311039024734036378856485664535155} a^{10} - \frac{118120682619368067058616487931909999}{1091799351222606327409708370980816395} a^{9} - \frac{31385191861067266888634523156426001}{121311039024734036378856485664535155} a^{8} + \frac{498940074039511168618965824415583918}{1091799351222606327409708370980816395} a^{7} - \frac{168583426125674418969800464929941924}{363933117074202109136569456993605465} a^{6} - \frac{95250121889882806635660149920156559}{363933117074202109136569456993605465} a^{5} - \frac{176364260155643975422945920063231596}{1091799351222606327409708370980816395} a^{4} - \frac{3908007211919931854728088820220429}{12267408440703441881007959224503555} a^{3} - \frac{4898773446637071210054879572740663}{40437013008244678792952161888178385} a^{2} + \frac{33855408974682950007114951622347268}{121311039024734036378856485664535155} a + \frac{16779194781113337831301999119326012}{40437013008244678792952161888178385}$
Class group and class number
$C_{2}$, which has order $2$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 49929624.7167 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 512 |
| The 32 conjugacy class representatives for t16n875 |
| Character table for t16n875 is not computed |
Intermediate fields
| \(\Q(\sqrt{5}) \), 4.4.2525.1, 8.4.1625943765625.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/3.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/11.8.0.1}{8} }{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }{,}\,{\href{/LocalNumberField/29.4.0.1}{4} }{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/41.8.0.1}{8} }{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/59.8.0.1}{8} }{,}\,{\href{/LocalNumberField/59.4.0.1}{4} }{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $5$ | 5.8.6.1 | $x^{8} - 5 x^{4} + 400$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ |
| 5.8.6.1 | $x^{8} - 5 x^{4} + 400$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ | |
| 101 | Data not computed | ||||||