Normalized defining polynomial
\( x^{16} - 4 x^{15} - 39 x^{14} + 134 x^{13} + 397 x^{12} - 1516 x^{11} - 384 x^{10} + 6427 x^{9} - 10296 x^{8} - 493 x^{7} + 18943 x^{6} - 3005 x^{5} + 10896 x^{4} - 10360 x^{3} + 64840 x^{2} - 41745 x + 53605 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[4, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(26968313608671985107666015625=5^{12}\cdot 101^{10}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $59.83$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $5, 101$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{15} a^{12} - \frac{1}{5} a^{11} + \frac{2}{15} a^{10} + \frac{2}{5} a^{8} - \frac{7}{15} a^{6} + \frac{2}{5} a^{5} + \frac{1}{15} a^{4} - \frac{1}{3} a^{3} + \frac{1}{3} a + \frac{1}{3}$, $\frac{1}{1185} a^{13} - \frac{8}{1185} a^{12} - \frac{238}{1185} a^{11} + \frac{58}{237} a^{10} + \frac{132}{395} a^{9} - \frac{25}{79} a^{8} + \frac{188}{1185} a^{7} + \frac{386}{1185} a^{6} + \frac{556}{1185} a^{5} - \frac{2}{237} a^{4} + \frac{59}{237} a^{3} + \frac{61}{237} a^{2} - \frac{70}{237} a + \frac{25}{237}$, $\frac{1}{712185} a^{14} - \frac{28}{142437} a^{13} + \frac{7488}{237395} a^{12} - \frac{136327}{712185} a^{11} + \frac{213968}{712185} a^{10} + \frac{16421}{237395} a^{9} + \frac{303989}{712185} a^{8} - \frac{7730}{142437} a^{7} + \frac{5769}{237395} a^{6} + \frac{137054}{712185} a^{5} - \frac{142639}{712185} a^{4} + \frac{15647}{47479} a^{3} + \frac{12971}{142437} a^{2} + \frac{42287}{142437} a - \frac{51569}{142437}$, $\frac{1}{3014581760905415438555343870675} a^{15} - \frac{78836789129779185650999}{200972117393694362570356258045} a^{14} + \frac{499756896749633314012663561}{3014581760905415438555343870675} a^{13} + \frac{92683117534968894753940667923}{3014581760905415438555343870675} a^{12} - \frac{646258790408334597080784274556}{3014581760905415438555343870675} a^{11} - \frac{296123242816230790531604180609}{602916352181083087711068774135} a^{10} - \frac{406199815369325353710518415739}{3014581760905415438555343870675} a^{9} + \frac{466026684621685103912843881912}{1004860586968471812851781290225} a^{8} + \frac{554549846617268986159751709038}{3014581760905415438555343870675} a^{7} + \frac{290371722522048161762441202973}{1004860586968471812851781290225} a^{6} + \frac{892374906274382455867312936559}{3014581760905415438555343870675} a^{5} + \frac{997979849053760940637608331046}{3014581760905415438555343870675} a^{4} - \frac{10953808389419565360166824086}{40194423478738872514071251609} a^{3} + \frac{283673889582974018160906888533}{602916352181083087711068774135} a^{2} + \frac{11781335681152473500160292262}{40194423478738872514071251609} a - \frac{161233168123702552837158309224}{602916352181083087711068774135}$
Class group and class number
$C_{2}$, which has order $2$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 99884309.1227 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 512 |
| The 32 conjugacy class representatives for t16n875 |
| Character table for t16n875 is not computed |
Intermediate fields
| \(\Q(\sqrt{5}) \), 4.4.2525.1, 8.4.1625943765625.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/3.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/11.8.0.1}{8} }{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }{,}\,{\href{/LocalNumberField/29.4.0.1}{4} }{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/41.8.0.1}{8} }{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/59.8.0.1}{8} }{,}\,{\href{/LocalNumberField/59.4.0.1}{4} }{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $5$ | 5.4.3.2 | $x^{4} - 20$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ |
| 5.4.3.2 | $x^{4} - 20$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 5.4.3.2 | $x^{4} - 20$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 5.4.3.2 | $x^{4} - 20$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 101 | Data not computed | ||||||