Normalized defining polynomial
\( x^{16} - 3 x^{15} + 13 x^{14} + 12 x^{13} - 66 x^{12} + 717 x^{11} - 2578 x^{10} + 7578 x^{9} - 3507 x^{8} - 45982 x^{7} + 206202 x^{6} - 448959 x^{5} + 541710 x^{4} - 375564 x^{3} + 149429 x^{2} - 31859 x + 2861 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[4, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(26968313608671985107666015625=5^{12}\cdot 101^{10}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $59.83$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $5, 101$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{5} a^{10} + \frac{1}{5} a^{9} + \frac{2}{5} a^{8} - \frac{1}{5} a^{6} + \frac{2}{5} a^{5} - \frac{2}{5} a^{4} + \frac{2}{5} a^{3} - \frac{1}{5} a^{2} + \frac{1}{5}$, $\frac{1}{5} a^{11} + \frac{1}{5} a^{9} - \frac{2}{5} a^{8} - \frac{1}{5} a^{7} - \frac{2}{5} a^{6} + \frac{1}{5} a^{5} - \frac{1}{5} a^{4} + \frac{2}{5} a^{3} + \frac{1}{5} a^{2} + \frac{1}{5} a - \frac{1}{5}$, $\frac{1}{500} a^{12} - \frac{21}{250} a^{11} - \frac{1}{10} a^{10} - \frac{7}{100} a^{9} + \frac{59}{125} a^{8} + \frac{7}{25} a^{7} - \frac{59}{500} a^{6} - \frac{4}{25} a^{5} - \frac{6}{125} a^{4} - \frac{41}{100} a^{3} + \frac{3}{10} a^{2} + \frac{3}{125} a - \frac{189}{500}$, $\frac{1}{500} a^{13} - \frac{7}{250} a^{11} - \frac{7}{100} a^{10} + \frac{83}{250} a^{9} + \frac{38}{125} a^{8} + \frac{21}{500} a^{7} + \frac{121}{250} a^{6} + \frac{29}{125} a^{5} - \frac{213}{500} a^{4} - \frac{8}{25} a^{3} + \frac{3}{125} a^{2} + \frac{23}{100} a - \frac{69}{250}$, $\frac{1}{32500} a^{14} - \frac{1}{6500} a^{13} - \frac{2}{8125} a^{12} - \frac{2417}{32500} a^{11} + \frac{141}{32500} a^{10} - \frac{2122}{8125} a^{9} - \frac{12723}{32500} a^{8} + \frac{2677}{32500} a^{7} + \frac{2463}{8125} a^{6} - \frac{8273}{32500} a^{5} - \frac{1739}{32500} a^{4} - \frac{1559}{16250} a^{3} + \frac{1031}{6500} a^{2} - \frac{11341}{32500} a - \frac{661}{8125}$, $\frac{1}{16534416755089669182500} a^{15} + \frac{69373192421395383}{16534416755089669182500} a^{14} + \frac{1575004346762868691}{8267208377544834591250} a^{13} + \frac{4000713402431586436}{4133604188772417295625} a^{12} + \frac{321607146375186105219}{3306883351017933836500} a^{11} + \frac{10728969244218994071}{826720837754483459125} a^{10} - \frac{3005552964011234452031}{8267208377544834591250} a^{9} + \frac{8676559184932563147}{33135103717614567500} a^{8} - \frac{3484584303337692401721}{8267208377544834591250} a^{7} - \frac{1170765453593259936868}{4133604188772417295625} a^{6} - \frac{4187882591827513518083}{16534416755089669182500} a^{5} + \frac{10804842830610265579}{33068833510179338365} a^{4} + \frac{816811578008435941623}{8267208377544834591250} a^{3} - \frac{1231379141175382584491}{16534416755089669182500} a^{2} + \frac{4035909341377740647589}{8267208377544834591250} a - \frac{2982841242748215432497}{16534416755089669182500}$
Class group and class number
$C_{2}$, which has order $2$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 109382898.87 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 512 |
| The 32 conjugacy class representatives for t16n875 |
| Character table for t16n875 is not computed |
Intermediate fields
| \(\Q(\sqrt{5}) \), 4.4.2525.1, 8.4.1625943765625.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/11.8.0.1}{8} }{,}\,{\href{/LocalNumberField/11.4.0.1}{4} }{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/41.8.0.1}{8} }{,}\,{\href{/LocalNumberField/41.4.0.1}{4} }{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/59.8.0.1}{8} }{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $5$ | 5.4.3.2 | $x^{4} - 20$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ |
| 5.4.3.2 | $x^{4} - 20$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 5.4.3.2 | $x^{4} - 20$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 5.4.3.2 | $x^{4} - 20$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 101 | Data not computed | ||||||