Normalized defining polynomial
\( x^{16} - 8 x^{15} + 36 x^{14} - 112 x^{13} + 240 x^{12} - 296 x^{11} - 2568 x^{10} + 1168 x^{9} - 12978 x^{8} + 83464 x^{7} - 282080 x^{6} + 816464 x^{5} - 1205276 x^{4} + 1586144 x^{3} - 1192448 x^{2} + 739504 x - 192398 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[4, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(267033524201279981591516413952=2^{54}\cdot 7^{8}\cdot 137^{3}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $69.05$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 7, 137$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $\frac{1}{1115} a^{14} + \frac{526}{1115} a^{13} - \frac{107}{1115} a^{12} + \frac{538}{1115} a^{11} + \frac{431}{1115} a^{10} + \frac{527}{1115} a^{9} - \frac{87}{1115} a^{8} + \frac{186}{1115} a^{7} + \frac{24}{223} a^{6} + \frac{542}{1115} a^{5} - \frac{522}{1115} a^{4} + \frac{457}{1115} a^{3} - \frac{104}{1115} a^{2} + \frac{534}{1115} a - \frac{369}{1115}$, $\frac{1}{901336051536417538892826299228094783940070595} a^{15} - \frac{1682865112024342884038124050415442317832}{33382816723571019958993566638077584590372985} a^{14} + \frac{46741153982261247035396005676153838236363617}{100148450170713059876980699914232753771118955} a^{13} - \frac{292550290055680726724888153887173771766665142}{901336051536417538892826299228094783940070595} a^{12} - \frac{97501086190234313072582249727140291937714104}{901336051536417538892826299228094783940070595} a^{11} + \frac{18893385005158473262078172754439151401970818}{100148450170713059876980699914232753771118955} a^{10} - \frac{23024265157289571844933945304564501435720224}{300445350512139179630942099742698261313356865} a^{9} - \frac{2940158036396772468488380807101269201800454}{901336051536417538892826299228094783940070595} a^{8} - \frac{72848867242437421788177427247655200430652865}{180267210307283507778565259845618956788014119} a^{7} - \frac{111524568998492744150147763041776910727244258}{901336051536417538892826299228094783940070595} a^{6} - \frac{339672469526311212104162530994923659233132287}{901336051536417538892826299228094783940070595} a^{5} - \frac{106537245319845052448175919169277957138470276}{300445350512139179630942099742698261313356865} a^{4} - \frac{211128977420609328819466078845273100257628034}{901336051536417538892826299228094783940070595} a^{3} + \frac{431211328476414384755682640918621390272186799}{901336051536417538892826299228094783940070595} a^{2} + \frac{15022875182521840183712519125196503247206592}{300445350512139179630942099742698261313356865} a - \frac{61356909665373102527318923848701770500821380}{180267210307283507778565259845618956788014119}$
Class group and class number
$C_{2}\times C_{2}$, which has order $4$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 103699095.403 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 2048 |
| The 74 conjugacy class representatives for t16n1461 are not computed |
| Character table for t16n1461 is not computed |
Intermediate fields
| \(\Q(\sqrt{2}) \), \(\Q(\sqrt{7}) \), \(\Q(\sqrt{14}) \), 4.4.7168.1 x2, 4.4.25088.1 x2, \(\Q(\sqrt{2}, \sqrt{7})\), 8.8.10070523904.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/3.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/5.8.0.1}{8} }{,}\,{\href{/LocalNumberField/5.4.0.1}{4} }^{2}$ | R | ${\href{/LocalNumberField/11.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/13.8.0.1}{8} }{,}\,{\href{/LocalNumberField/13.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }{,}\,{\href{/LocalNumberField/43.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $7$ | 7.4.2.1 | $x^{4} + 35 x^{2} + 441$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 7.4.2.1 | $x^{4} + 35 x^{2} + 441$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 7.8.4.1 | $x^{8} + 14 x^{6} + 539 x^{4} + 343 x^{2} + 60025$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| 137 | Data not computed | ||||||