Normalized defining polynomial
\( x^{16} - 3 x^{15} + 77 x^{14} - 163 x^{13} + 2189 x^{12} - 3558 x^{11} + 25243 x^{10} - 44177 x^{9} + 10386 x^{8} - 478326 x^{7} - 2486412 x^{6} - 3692832 x^{5} - 20644371 x^{4} - 18441153 x^{3} - 11710839 x^{2} - 64012350 x + 9493447 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[4, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(258930158322830089457985795017=17^{15}\cdot 67^{6}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $68.92$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $17, 67$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $\frac{1}{6294659757359515833476913032043701676510023341657731843901} a^{15} - \frac{748756703477750235893695970124403245660643600644766415412}{6294659757359515833476913032043701676510023341657731843901} a^{14} + \frac{1531861382967947923462319233037863562729593548013363792449}{6294659757359515833476913032043701676510023341657731843901} a^{13} - \frac{1811181852776962576115647341436375396333255931783721481301}{6294659757359515833476913032043701676510023341657731843901} a^{12} + \frac{506985196668408052188537728011622742086665445760953707899}{6294659757359515833476913032043701676510023341657731843901} a^{11} - \frac{2474736776528509582252799020997600494480330918670234002829}{6294659757359515833476913032043701676510023341657731843901} a^{10} - \frac{2608252805631527498781977174977110097910946918570049155290}{6294659757359515833476913032043701676510023341657731843901} a^{9} + \frac{1350104875583651182908827927873413658900383639883681757262}{6294659757359515833476913032043701676510023341657731843901} a^{8} - \frac{2085290781281019947832671007414488383944373298180544000467}{6294659757359515833476913032043701676510023341657731843901} a^{7} + \frac{359461574410492900717104179758020232133573728671413288363}{6294659757359515833476913032043701676510023341657731843901} a^{6} + \frac{1316683071188964331561577060338982294015285511562487943408}{6294659757359515833476913032043701676510023341657731843901} a^{5} + \frac{2941555193420658032294406188361807994556453171432966465313}{6294659757359515833476913032043701676510023341657731843901} a^{4} + \frac{945374042274965479820374105914687835684104985921357601599}{6294659757359515833476913032043701676510023341657731843901} a^{3} + \frac{1082753694813366518618812776809604843840265369722569100988}{6294659757359515833476913032043701676510023341657731843901} a^{2} - \frac{1293410781670903720296819926649685509964278224518818944621}{6294659757359515833476913032043701676510023341657731843901} a + \frac{520104755560622648810030673681498899668162761375942934124}{6294659757359515833476913032043701676510023341657731843901}$
Class group and class number
$C_{2}\times C_{2}\times C_{4}\times C_{4}$, which has order $64$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 2701772.21217 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$(C_2\times C_8).D_4$ (as 16T306):
| A solvable group of order 128 |
| The 26 conjugacy class representatives for $(C_2\times C_8).D_4$ |
| Character table for $(C_2\times C_8).D_4$ is not computed |
Intermediate fields
| \(\Q(\sqrt{17}) \), 4.4.4913.1, \(\Q(\zeta_{17})^+\) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.8.0.1}{8} }^{2}$ | $16$ | $16$ | $16$ | $16$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/19.8.0.1}{8} }^{2}$ | $16$ | $16$ | $16$ | $16$ | $16$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/59.8.0.1}{8} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 17 | Data not computed | ||||||
| $67$ | $\Q_{67}$ | $x + 4$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{67}$ | $x + 4$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{67}$ | $x + 4$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{67}$ | $x + 4$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 67.2.1.2 | $x^{2} + 268$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 67.2.1.2 | $x^{2} + 268$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 67.2.1.2 | $x^{2} + 268$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 67.2.1.2 | $x^{2} + 268$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 67.2.1.2 | $x^{2} + 268$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 67.2.1.2 | $x^{2} + 268$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |