Properties

Label 16.4.25833126466...5129.1
Degree $16$
Signature $[4, 6]$
Discriminant $3^{8}\cdot 13^{14}$
Root discriminant $16.34$
Ramified primes $3, 13$
Class number $1$ (GRH)
Class group Trivial (GRH)
Galois group $C_2^3.C_4$ (as 16T41)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1, -1, -7, -39, 34, 46, -21, -37, 57, 41, -99, 7, 34, 0, -7, -1, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^16 - x^15 - 7*x^14 + 34*x^12 + 7*x^11 - 99*x^10 + 41*x^9 + 57*x^8 - 37*x^7 - 21*x^6 + 46*x^5 + 34*x^4 - 39*x^3 - 7*x^2 - x + 1)
 
gp: K = bnfinit(x^16 - x^15 - 7*x^14 + 34*x^12 + 7*x^11 - 99*x^10 + 41*x^9 + 57*x^8 - 37*x^7 - 21*x^6 + 46*x^5 + 34*x^4 - 39*x^3 - 7*x^2 - x + 1, 1)
 

Normalized defining polynomial

\( x^{16} - x^{15} - 7 x^{14} + 34 x^{12} + 7 x^{11} - 99 x^{10} + 41 x^{9} + 57 x^{8} - 37 x^{7} - 21 x^{6} + 46 x^{5} + 34 x^{4} - 39 x^{3} - 7 x^{2} - x + 1 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $16$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[4, 6]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(25833126466573035129=3^{8}\cdot 13^{14}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $16.34$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $3, 13$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{3} a^{12} - \frac{1}{3} a^{11} + \frac{1}{3} a^{9} + \frac{1}{3} a^{7} - \frac{1}{3} a^{6} + \frac{1}{3} a^{5} + \frac{1}{3} a^{4} - \frac{1}{3} a^{3} - \frac{1}{3} a^{2} - \frac{1}{3}$, $\frac{1}{3} a^{13} - \frac{1}{3} a^{11} + \frac{1}{3} a^{10} + \frac{1}{3} a^{9} + \frac{1}{3} a^{8} - \frac{1}{3} a^{5} + \frac{1}{3} a^{3} - \frac{1}{3} a^{2} - \frac{1}{3} a - \frac{1}{3}$, $\frac{1}{10533} a^{14} + \frac{1202}{10533} a^{13} + \frac{1670}{10533} a^{12} + \frac{1430}{10533} a^{11} - \frac{1365}{3511} a^{10} + \frac{1363}{3511} a^{9} + \frac{2042}{10533} a^{8} - \frac{764}{3511} a^{7} + \frac{3362}{10533} a^{6} + \frac{2830}{10533} a^{5} + \frac{586}{10533} a^{4} - \frac{5264}{10533} a^{3} - \frac{1105}{3511} a^{2} + \frac{251}{3511} a + \frac{3460}{10533}$, $\frac{1}{79324023} a^{15} - \frac{2392}{79324023} a^{14} - \frac{342837}{26441341} a^{13} + \frac{2263341}{26441341} a^{12} - \frac{31177580}{79324023} a^{11} + \frac{35664634}{79324023} a^{10} - \frac{26315234}{79324023} a^{9} + \frac{2436895}{79324023} a^{8} + \frac{4633514}{26441341} a^{7} + \frac{8243042}{26441341} a^{6} + \frac{22587196}{79324023} a^{5} + \frac{34557536}{79324023} a^{4} - \frac{4104948}{26441341} a^{3} - \frac{1290008}{79324023} a^{2} + \frac{5572173}{26441341} a - \frac{20668535}{79324023}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

Trivial group, which has order $1$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $9$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 2953.20872844 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$C_2^3.C_4$ (as 16T41):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A solvable group of order 32
The 11 conjugacy class representatives for $C_2^3.C_4$
Character table for $C_2^3.C_4$

Intermediate fields

\(\Q(\sqrt{13}) \), 4.4.19773.1, 4.2.6591.1, 4.2.507.1, 8.4.5082629877.1 x2, 8.4.390971529.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Galois closure: data not computed
Degree 8 siblings: data not computed
Degree 16 siblings: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type ${\href{/LocalNumberField/2.8.0.1}{8} }^{2}$ R ${\href{/LocalNumberField/5.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/11.8.0.1}{8} }^{2}$ R ${\href{/LocalNumberField/17.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{4}$ ${\href{/LocalNumberField/19.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/23.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{4}$ ${\href{/LocalNumberField/29.2.0.1}{2} }^{8}$ ${\href{/LocalNumberField/31.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/41.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/47.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/53.2.0.1}{2} }^{8}$ ${\href{/LocalNumberField/59.8.0.1}{8} }^{2}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$3$3.4.2.1$x^{4} + 9 x^{2} + 36$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
3.4.2.1$x^{4} + 9 x^{2} + 36$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
3.4.2.1$x^{4} + 9 x^{2} + 36$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
3.4.2.1$x^{4} + 9 x^{2} + 36$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
13Data not computed