Properties

Label 16.4.25716105547...0625.1
Degree $16$
Signature $[4, 6]$
Discriminant $5^{8}\cdot 71^{2}\cdot 1901^{4}$
Root discriminant $25.16$
Ramified primes $5, 71, 1901$
Class number $1$
Class group Trivial
Galois group 16T1884

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![49, -161, -370, 504, 117, -1041, 818, -409, -1, 114, 40, -71, 12, 21, -11, -1, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^16 - x^15 - 11*x^14 + 21*x^13 + 12*x^12 - 71*x^11 + 40*x^10 + 114*x^9 - x^8 - 409*x^7 + 818*x^6 - 1041*x^5 + 117*x^4 + 504*x^3 - 370*x^2 - 161*x + 49)
 
gp: K = bnfinit(x^16 - x^15 - 11*x^14 + 21*x^13 + 12*x^12 - 71*x^11 + 40*x^10 + 114*x^9 - x^8 - 409*x^7 + 818*x^6 - 1041*x^5 + 117*x^4 + 504*x^3 - 370*x^2 - 161*x + 49, 1)
 

Normalized defining polynomial

\( x^{16} - x^{15} - 11 x^{14} + 21 x^{13} + 12 x^{12} - 71 x^{11} + 40 x^{10} + 114 x^{9} - x^{8} - 409 x^{7} + 818 x^{6} - 1041 x^{5} + 117 x^{4} + 504 x^{3} - 370 x^{2} - 161 x + 49 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $16$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[4, 6]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(25716105547803375390625=5^{8}\cdot 71^{2}\cdot 1901^{4}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $25.16$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $5, 71, 1901$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $\frac{1}{7} a^{14} + \frac{2}{7} a^{13} + \frac{2}{7} a^{12} - \frac{1}{7} a^{11} + \frac{2}{7} a^{10} - \frac{2}{7} a^{9} - \frac{1}{7} a^{8} - \frac{1}{7} a^{7} + \frac{3}{7} a^{6} - \frac{1}{7} a^{5} + \frac{3}{7} a^{4} - \frac{3}{7} a^{3} + \frac{3}{7} a^{2} + \frac{2}{7} a$, $\frac{1}{33088966736153077758491} a^{15} + \frac{1121067216245501926918}{33088966736153077758491} a^{14} - \frac{4658337490569820600}{33088966736153077758491} a^{13} + \frac{2220539945727248287421}{4726995248021868251213} a^{12} + \frac{2961165266427945972631}{33088966736153077758491} a^{11} - \frac{1552421107795819919925}{33088966736153077758491} a^{10} + \frac{5577827830735359812898}{33088966736153077758491} a^{9} - \frac{11365188575852878639493}{33088966736153077758491} a^{8} - \frac{7718446017803911904291}{33088966736153077758491} a^{7} + \frac{12838725791966831582053}{33088966736153077758491} a^{6} - \frac{15941697714583868859374}{33088966736153077758491} a^{5} + \frac{14839667318141416170023}{33088966736153077758491} a^{4} - \frac{1553657159378475571541}{33088966736153077758491} a^{3} + \frac{258427418799299585040}{675285035431695464459} a^{2} + \frac{3336138495956323825202}{33088966736153077758491} a + \frac{1223624450123544461005}{4726995248021868251213}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

Trivial group, which has order $1$

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $9$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 60812.9250846 \)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

16T1884:

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A solvable group of order 147456
The 136 conjugacy class representatives for t16n1884 are not computed
Character table for t16n1884 is not computed

Intermediate fields

\(\Q(\sqrt{5}) \), 8.6.84356875.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Degree 16 siblings: data not computed
Degree 32 siblings: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type ${\href{/LocalNumberField/2.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ R ${\href{/LocalNumberField/7.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/11.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/13.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/19.6.0.1}{6} }{,}\,{\href{/LocalNumberField/19.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{2}$ ${\href{/LocalNumberField/23.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{2}$ ${\href{/LocalNumberField/29.6.0.1}{6} }{,}\,{\href{/LocalNumberField/29.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{2}$ ${\href{/LocalNumberField/31.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/31.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{2}$ ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/41.4.0.1}{4} }{,}\,{\href{/LocalNumberField/41.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{3}$ ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/47.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/59.8.0.1}{8} }{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{2}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$5$5.8.4.1$x^{8} + 10 x^{6} + 125 x^{4} + 2500$$2$$4$$4$$C_4\times C_2$$[\ ]_{2}^{4}$
5.8.4.1$x^{8} + 10 x^{6} + 125 x^{4} + 2500$$2$$4$$4$$C_4\times C_2$$[\ ]_{2}^{4}$
$71$$\Q_{71}$$x + 2$$1$$1$$0$Trivial$[\ ]$
$\Q_{71}$$x + 2$$1$$1$$0$Trivial$[\ ]$
71.2.0.1$x^{2} - x + 11$$1$$2$$0$$C_2$$[\ ]^{2}$
71.4.2.1$x^{4} + 1491 x^{2} + 609961$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
71.8.0.1$x^{8} - 7 x + 13$$1$$8$$0$$C_8$$[\ ]^{8}$
1901Data not computed