Normalized defining polynomial
\( x^{16} - 3 x^{15} + 16 x^{14} - 66 x^{13} - 39 x^{12} + 156 x^{11} - 715 x^{10} + 5148 x^{9} + 1677 x^{8} + 4836 x^{7} - 254072 x^{6} + 561171 x^{5} + 298753 x^{4} - 2798238 x^{3} + 5367456 x^{2} - 4861080 x + 1688688 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[4, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(25605559374504409818155101477=13^{15}\cdot 29^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $59.64$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $13, 29$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $\frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{2} a^{6} - \frac{1}{2} a$, $\frac{1}{6} a^{7} - \frac{1}{6} a^{5} - \frac{1}{2} a^{4} + \frac{1}{6} a^{3} - \frac{1}{6} a$, $\frac{1}{78} a^{8} + \frac{5}{78} a^{7} + \frac{1}{39} a^{6} - \frac{17}{78} a^{5} + \frac{31}{78} a^{4} - \frac{2}{39} a^{3} + \frac{1}{39} a^{2} + \frac{31}{78} a - \frac{2}{13}$, $\frac{1}{78} a^{9} + \frac{1}{26} a^{7} + \frac{2}{13} a^{6} + \frac{2}{13} a^{5} - \frac{1}{26} a^{4} - \frac{5}{13} a^{3} + \frac{7}{26} a^{2} + \frac{1}{39} a - \frac{3}{13}$, $\frac{1}{156} a^{10} - \frac{1}{156} a^{8} - \frac{2}{39} a^{7} - \frac{35}{156} a^{6} + \frac{1}{6} a^{5} - \frac{37}{156} a^{4} + \frac{19}{39} a^{3} - \frac{15}{52} a^{2} + \frac{7}{78} a + \frac{4}{13}$, $\frac{1}{156} a^{11} - \frac{1}{156} a^{9} + \frac{5}{156} a^{7} - \frac{3}{13} a^{6} - \frac{17}{156} a^{5} + \frac{1}{13} a^{4} - \frac{77}{156} a^{3} + \frac{5}{26} a^{2} + \frac{31}{78} a + \frac{5}{13}$, $\frac{1}{156} a^{12} - \frac{1}{13} a^{7} + \frac{3}{26} a^{6} - \frac{2}{13} a^{5} - \frac{1}{39} a^{4} - \frac{5}{13} a^{3} - \frac{23}{52} a^{2} + \frac{9}{26} a - \frac{5}{13}$, $\frac{1}{468} a^{13} + \frac{1}{468} a^{12} - \frac{1}{468} a^{11} - \frac{1}{468} a^{10} - \frac{1}{468} a^{9} - \frac{1}{468} a^{8} + \frac{1}{468} a^{7} - \frac{17}{468} a^{6} - \frac{101}{468} a^{5} + \frac{43}{468} a^{4} + \frac{37}{234} a^{3} + \frac{14}{117} a^{2} - \frac{1}{13} a + \frac{6}{13}$, $\frac{1}{1404} a^{14} + \frac{1}{1404} a^{13} - \frac{1}{1404} a^{12} - \frac{1}{1404} a^{11} - \frac{1}{351} a^{10} - \frac{1}{1404} a^{9} + \frac{1}{351} a^{8} - \frac{71}{1404} a^{7} + \frac{119}{702} a^{6} + \frac{277}{1404} a^{5} - \frac{283}{1404} a^{4} + \frac{113}{351} a^{3} - \frac{67}{156} a^{2} + \frac{7}{39} a + \frac{3}{13}$, $\frac{1}{24318731556172021000105318813776} a^{15} + \frac{854753425656017633791007557}{8106243852057340333368439604592} a^{14} + \frac{11106940209030195935780571101}{12159365778086010500052659406888} a^{13} - \frac{9260433015994634664960453139}{4053121926028670166684219802296} a^{12} - \frac{21466997577246223128580240633}{8106243852057340333368439604592} a^{11} + \frac{10925492339557057761292958051}{4053121926028670166684219802296} a^{10} + \frac{66518322792202546424028280337}{24318731556172021000105318813776} a^{9} - \frac{556436327828283067822895581}{4053121926028670166684219802296} a^{8} - \frac{412636219491747417463100547533}{8106243852057340333368439604592} a^{7} + \frac{286611147094748860984980596075}{4053121926028670166684219802296} a^{6} + \frac{890123716333615705085182669465}{6079682889043005250026329703444} a^{5} + \frac{164438162908622634568887211253}{900693761339704481485382178288} a^{4} + \frac{764466654137505952406283219343}{1870671658167078538469639908752} a^{3} - \frac{489589586757462092664229035619}{1013280481507167541671054950574} a^{2} - \frac{113810517776383139107505031211}{337760160502389180557018316858} a - \frac{17126513242021404921653442181}{112586720167463060185672772286}$
Class group and class number
$C_{2}$, which has order $2$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 190310943.764 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_4:D_4.D_4$ (as 16T681):
| A solvable group of order 256 |
| The 19 conjugacy class representatives for $C_4:D_4.D_4$ |
| Character table for $C_4:D_4.D_4$ |
Intermediate fields
| \(\Q(\sqrt{13}) \), 4.4.63713.1, 8.4.52771502797.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/2.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/3.2.0.1}{2} }^{8}$ | $16$ | $16$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{2}$ | R | ${\href{/LocalNumberField/17.8.0.1}{8} }{,}\,{\href{/LocalNumberField/17.4.0.1}{4} }{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}$ | R | ${\href{/LocalNumberField/31.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }{,}\,{\href{/LocalNumberField/43.4.0.1}{4} }{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{4}$ | $16$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 13 | Data not computed | ||||||
| $29$ | 29.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 29.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 29.4.2.1 | $x^{4} + 145 x^{2} + 7569$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 29.8.6.2 | $x^{8} + 145 x^{4} + 7569$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ | |