Normalized defining polynomial
\( x^{16} - 5 x^{15} - 4 x^{14} + 55 x^{13} - 43 x^{12} - 90 x^{11} - 67 x^{10} - 335 x^{9} + 820 x^{8} - 5325 x^{7} - 5833 x^{6} + 35190 x^{5} + 15777 x^{4} - 36975 x^{3} + 131479 x^{2} + 55160 x - 228404 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[4, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(24471271802225000000000000=2^{12}\cdot 5^{14}\cdot 9929^{3}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $38.62$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 9929$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $\frac{1}{11} a^{14} - \frac{3}{11} a^{13} + \frac{3}{11} a^{11} - \frac{4}{11} a^{10} - \frac{2}{11} a^{9} - \frac{1}{11} a^{8} - \frac{5}{11} a^{7} - \frac{3}{11} a^{6} - \frac{2}{11} a^{5} - \frac{4}{11} a^{4} - \frac{5}{11} a^{3} - \frac{3}{11} a^{2} - \frac{5}{11} a$, $\frac{1}{1070682760446329415235976183209244279384} a^{15} - \frac{21351177016918288617942537194427723415}{1070682760446329415235976183209244279384} a^{14} - \frac{62933142612172216427238672839384554811}{535341380223164707617988091604622139692} a^{13} + \frac{57246009461666190983802168180035077195}{1070682760446329415235976183209244279384} a^{12} + \frac{131145491916767010433156394066642869815}{1070682760446329415235976183209244279384} a^{11} - \frac{56446441886371608447140862230648373152}{133835345055791176904497022901155534923} a^{10} + \frac{517440430565799761785676355728223840957}{1070682760446329415235976183209244279384} a^{9} - \frac{396759013497087868338106755754589309129}{1070682760446329415235976183209244279384} a^{8} - \frac{224475372199411440627950547309145413173}{535341380223164707617988091604622139692} a^{7} + \frac{423951525907879719299555222369285051711}{1070682760446329415235976183209244279384} a^{6} - \frac{94973400856673084301298032776622420847}{1070682760446329415235976183209244279384} a^{5} - \frac{61999986126923528301047826076153143003}{267670690111582353808994045802311069846} a^{4} - \frac{156226473845886083848952067978171863255}{1070682760446329415235976183209244279384} a^{3} + \frac{439398237173498986085465855839125667143}{1070682760446329415235976183209244279384} a^{2} - \frac{395095064068543025122696850604813085343}{1070682760446329415235976183209244279384} a + \frac{7762665767174547155254644748164663577}{48667398202105882510726190145874739972}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 4430959.66595 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 73728 |
| The 104 conjugacy class representatives for t16n1871 are not computed |
| Character table for t16n1871 is not computed |
Intermediate fields
| \(\Q(\sqrt{5}) \), 8.4.155140625.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | $16$ | R | $16$ | ${\href{/LocalNumberField/11.8.0.1}{8} }{,}\,{\href{/LocalNumberField/11.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/13.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/17.12.0.1}{12} }{,}\,{\href{/LocalNumberField/17.4.0.1}{4} }$ | ${\href{/LocalNumberField/19.3.0.1}{3} }^{4}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/23.12.0.1}{12} }{,}\,{\href{/LocalNumberField/23.4.0.1}{4} }$ | ${\href{/LocalNumberField/29.6.0.1}{6} }{,}\,{\href{/LocalNumberField/29.4.0.1}{4} }{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }{,}\,{\href{/LocalNumberField/31.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/41.8.0.1}{8} }{,}\,{\href{/LocalNumberField/41.6.0.1}{6} }{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/47.12.0.1}{12} }{,}\,{\href{/LocalNumberField/47.4.0.1}{4} }$ | ${\href{/LocalNumberField/53.8.0.1}{8} }{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/59.8.0.1}{8} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.2.0.1 | $x^{2} - x + 1$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 2.2.0.1 | $x^{2} - x + 1$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 2.12.12.10 | $x^{12} - 6 x^{10} + 23 x^{8} - 28 x^{6} - 9 x^{4} - 30 x^{2} - 15$ | $2$ | $6$ | $12$ | 12T58 | $[2, 2, 2, 2]^{6}$ | |
| 5 | Data not computed | ||||||
| 9929 | Data not computed | ||||||