Normalized defining polynomial
\( x^{16} - x^{15} + 13 x^{14} + 2 x^{13} - 133 x^{12} + 233 x^{11} + 1693 x^{10} + 9 x^{9} - 7953 x^{8} - 10209 x^{7} + 579 x^{6} + 14278 x^{5} + 10911 x^{4} + 22319 x^{3} + 78008 x^{2} + 59010 x - 11651 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[4, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(24109722907876309716269637601=13^{10}\cdot 53^{10}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $59.41$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $13, 53$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{13} a^{12} - \frac{4}{13} a^{11} - \frac{6}{13} a^{10} + \frac{5}{13} a^{9} - \frac{1}{13} a^{7} + \frac{2}{13} a^{6} + \frac{2}{13} a^{5} - \frac{4}{13} a^{4} + \frac{2}{13} a^{3} - \frac{2}{13} a^{2} + \frac{5}{13} a + \frac{4}{13}$, $\frac{1}{13} a^{13} + \frac{4}{13} a^{11} - \frac{6}{13} a^{10} - \frac{6}{13} a^{9} - \frac{1}{13} a^{8} - \frac{2}{13} a^{7} - \frac{3}{13} a^{6} + \frac{4}{13} a^{5} - \frac{1}{13} a^{4} + \frac{6}{13} a^{3} - \frac{3}{13} a^{2} - \frac{2}{13} a + \frac{3}{13}$, $\frac{1}{663} a^{14} - \frac{1}{663} a^{13} + \frac{3}{221} a^{12} - \frac{49}{221} a^{11} + \frac{35}{663} a^{10} + \frac{56}{663} a^{9} - \frac{79}{663} a^{8} - \frac{266}{663} a^{7} - \frac{191}{663} a^{6} + \frac{239}{663} a^{5} + \frac{1}{3} a^{4} - \frac{142}{663} a^{3} + \frac{82}{663} a^{2} - \frac{55}{221} a + \frac{160}{663}$, $\frac{1}{31107341787668830960715417747995551} a^{15} + \frac{5872780804260655905153200053358}{10369113929222943653571805915998517} a^{14} + \frac{1193383228177666243811668210380362}{31107341787668830960715417747995551} a^{13} + \frac{166954373292971306845744142931838}{10369113929222943653571805915998517} a^{12} + \frac{516604430421148529884756399143200}{2392872445205294689285801365230427} a^{11} - \frac{7170032534249580621853591116968348}{31107341787668830960715417747995551} a^{10} + \frac{7201195388542538533399639669825480}{31107341787668830960715417747995551} a^{9} - \frac{400456139292914034101440423682859}{10369113929222943653571805915998517} a^{8} + \frac{12916189043200074472749610379466617}{31107341787668830960715417747995551} a^{7} + \frac{1105894382871595356744260656081422}{10369113929222943653571805915998517} a^{6} + \frac{8753758697719452443549203716768010}{31107341787668830960715417747995551} a^{5} + \frac{3551948240789817057184009412715535}{31107341787668830960715417747995551} a^{4} - \frac{584324290108378375278162595762769}{10369113929222943653571805915998517} a^{3} - \frac{813547524430770045087433534919834}{31107341787668830960715417747995551} a^{2} - \frac{5798915949985581588534962679282947}{31107341787668830960715417747995551} a + \frac{3222899702489178385353777723891529}{31107341787668830960715417747995551}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 81561758.266 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 512 |
| The 32 conjugacy class representatives for t16n875 |
| Character table for t16n875 is not computed |
Intermediate fields
| \(\Q(\sqrt{13}) \), 4.4.8957.1, 8.4.225360027841.2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/3.8.0.1}{8} }{,}\,{\href{/LocalNumberField/3.4.0.1}{4} }{,}\,{\href{/LocalNumberField/3.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/5.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/17.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/19.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/31.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/41.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{4}$ | R | ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $13$ | 13.4.3.1 | $x^{4} - 13$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ |
| 13.4.3.1 | $x^{4} - 13$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 13.4.2.1 | $x^{4} + 39 x^{2} + 676$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 13.4.2.1 | $x^{4} + 39 x^{2} + 676$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| $53$ | 53.2.0.1 | $x^{2} - x + 5$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 53.2.0.1 | $x^{2} - x + 5$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 53.4.3.2 | $x^{4} - 212$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 53.8.7.2 | $x^{8} - 212$ | $8$ | $1$ | $7$ | $C_8:C_2$ | $[\ ]_{8}^{2}$ |