Normalized defining polynomial
\( x^{16} - x^{15} - 3 x^{14} + x^{13} + 80 x^{12} - 211 x^{11} - 744 x^{10} + 1073 x^{9} + 3409 x^{8} - 6056 x^{7} + 27073 x^{6} - 21992 x^{5} - 201687 x^{4} + 197845 x^{3} + 712532 x^{2} - 1315048 x + 608357 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[4, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(24109722907876309716269637601=13^{10}\cdot 53^{10}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $59.41$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $13, 53$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{5} - \frac{1}{2}$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{6} - \frac{1}{2} a$, $\frac{1}{2} a^{12} - \frac{1}{2} a^{7} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{13} - \frac{1}{2} a^{8} - \frac{1}{2} a^{3}$, $\frac{1}{318} a^{14} - \frac{11}{106} a^{13} + \frac{1}{159} a^{12} - \frac{7}{53} a^{11} - \frac{7}{53} a^{10} + \frac{119}{318} a^{9} - \frac{1}{318} a^{8} + \frac{28}{159} a^{7} + \frac{62}{159} a^{6} + \frac{21}{53} a^{5} - \frac{39}{106} a^{4} - \frac{101}{318} a^{3} - \frac{61}{159} a^{2} + \frac{38}{159} a + \frac{37}{159}$, $\frac{1}{330801524728533909229941873151379802} a^{15} - \frac{250782954994196665801980928133341}{165400762364266954614970936575689901} a^{14} + \frac{10521448929154367834074826982882961}{165400762364266954614970936575689901} a^{13} + \frac{8929202053327387970920557734141023}{165400762364266954614970936575689901} a^{12} - \frac{19318034888422552955988036943121653}{110267174909511303076647291050459934} a^{11} + \frac{2407316755294908806581974287610067}{165400762364266954614970936575689901} a^{10} - \frac{30799496129719793772629291453883229}{165400762364266954614970936575689901} a^{9} - \frac{69896729290371924145149379786645321}{165400762364266954614970936575689901} a^{8} - \frac{26992245346028308145685987954919115}{55133587454755651538323645525229967} a^{7} + \frac{55199168035746556270207605767142367}{330801524728533909229941873151379802} a^{6} - \frac{634991298087054531969850034487577}{18377862484918550512774548508409989} a^{5} + \frac{65217768919271800112140752819263222}{165400762364266954614970936575689901} a^{4} + \frac{34079100289374559676210369639333092}{165400762364266954614970936575689901} a^{3} + \frac{34028822735328584848209279830011189}{165400762364266954614970936575689901} a^{2} + \frac{24188077365343569787300750317389789}{110267174909511303076647291050459934} a - \frac{128841093702686462188697060700334771}{330801524728533909229941873151379802}$
Class group and class number
$C_{2}$, which has order $2$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 116389821.925 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 512 |
| The 32 conjugacy class representatives for t16n875 |
| Character table for t16n875 is not computed |
Intermediate fields
| \(\Q(\sqrt{13}) \), 4.4.8957.1, 8.4.225360027841.2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/3.8.0.1}{8} }{,}\,{\href{/LocalNumberField/3.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/3.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/5.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }{,}\,{\href{/LocalNumberField/23.4.0.1}{4} }{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{4}$ | R | ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $13$ | 13.4.2.1 | $x^{4} + 39 x^{2} + 676$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 13.4.2.1 | $x^{4} + 39 x^{2} + 676$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 13.4.3.1 | $x^{4} - 13$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 13.4.3.1 | $x^{4} - 13$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 53 | Data not computed | ||||||