Normalized defining polynomial
\( x^{16} - 5 x^{15} + 12 x^{14} + 29 x^{13} - 289 x^{12} + 1464 x^{11} - 5843 x^{10} + 19773 x^{9} - 52032 x^{8} + 99384 x^{7} - 126683 x^{6} + 81320 x^{5} + 28279 x^{4} - 110890 x^{3} + 92734 x^{2} - 21014 x - 25437 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[4, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(24109722907876309716269637601=13^{10}\cdot 53^{10}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $59.41$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $13, 53$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{3} a^{12} - \frac{1}{3} a^{11} - \frac{1}{3} a^{10} - \frac{1}{3} a^{9} - \frac{1}{3} a^{8} - \frac{1}{3} a^{7} + \frac{1}{3} a^{3} - \frac{1}{3} a^{2} + \frac{1}{3} a$, $\frac{1}{9} a^{13} + \frac{1}{9} a^{12} - \frac{1}{3} a^{10} + \frac{1}{3} a^{9} - \frac{1}{3} a^{8} + \frac{4}{9} a^{7} + \frac{1}{3} a^{5} + \frac{4}{9} a^{4} - \frac{2}{9} a^{3} - \frac{4}{9} a^{2} + \frac{2}{9} a + \frac{1}{3}$, $\frac{1}{27} a^{14} - \frac{1}{27} a^{12} - \frac{1}{9} a^{11} + \frac{2}{9} a^{10} - \frac{2}{9} a^{9} - \frac{11}{27} a^{8} + \frac{5}{27} a^{7} + \frac{1}{9} a^{6} + \frac{1}{27} a^{5} - \frac{2}{9} a^{4} + \frac{7}{27} a^{3} - \frac{4}{9} a^{2} + \frac{10}{27} a + \frac{2}{9}$, $\frac{1}{77175589289241466118813433183639} a^{15} + \frac{496799362636409187251034220223}{77175589289241466118813433183639} a^{14} - \frac{243070005503882390502761578972}{77175589289241466118813433183639} a^{13} - \frac{9442239255203859682998144551579}{77175589289241466118813433183639} a^{12} + \frac{545353249486102579338049985350}{8575065476582385124312603687071} a^{11} - \frac{1524543405343728712728232982071}{25725196429747155372937811061213} a^{10} - \frac{30770479456712676974623109552483}{77175589289241466118813433183639} a^{9} + \frac{34171814792700658546075953307528}{77175589289241466118813433183639} a^{8} - \frac{348017373398592779536000067300}{1794781146261429444623568213573} a^{7} - \frac{2863651204541941961589911315801}{77175589289241466118813433183639} a^{6} - \frac{29967263197745625772167269532544}{77175589289241466118813433183639} a^{5} - \frac{26484928976275769435337444445151}{77175589289241466118813433183639} a^{4} - \frac{4604393584850445330733859295421}{77175589289241466118813433183639} a^{3} + \frac{4702296704404140717753307693747}{77175589289241466118813433183639} a^{2} + \frac{37746392464619374016047599706415}{77175589289241466118813433183639} a - \frac{8053250424351191248205585719064}{25725196429747155372937811061213}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 177357386.65 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 512 |
| The 32 conjugacy class representatives for t16n875 |
| Character table for t16n875 is not computed |
Intermediate fields
| \(\Q(\sqrt{13}) \), 4.4.8957.1, 8.4.225360027841.2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/3.8.0.1}{8} }{,}\,{\href{/LocalNumberField/3.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/3.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/5.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/17.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/19.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }{,}\,{\href{/LocalNumberField/23.4.0.1}{4} }{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/31.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/41.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{4}$ | R | ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $13$ | 13.4.2.1 | $x^{4} + 39 x^{2} + 676$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 13.4.3.1 | $x^{4} - 13$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 13.4.3.1 | $x^{4} - 13$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 13.4.2.1 | $x^{4} + 39 x^{2} + 676$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 53 | Data not computed | ||||||