Properties

Label 16.4.24109722907...7601.4
Degree $16$
Signature $[4, 6]$
Discriminant $13^{10}\cdot 53^{10}$
Root discriminant $59.41$
Ramified primes $13, 53$
Class number $1$ (GRH)
Class group Trivial (GRH)
Galois group 16T875

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-25437, -21014, 92734, -110890, 28279, 81320, -126683, 99384, -52032, 19773, -5843, 1464, -289, 29, 12, -5, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^16 - 5*x^15 + 12*x^14 + 29*x^13 - 289*x^12 + 1464*x^11 - 5843*x^10 + 19773*x^9 - 52032*x^8 + 99384*x^7 - 126683*x^6 + 81320*x^5 + 28279*x^4 - 110890*x^3 + 92734*x^2 - 21014*x - 25437)
 
gp: K = bnfinit(x^16 - 5*x^15 + 12*x^14 + 29*x^13 - 289*x^12 + 1464*x^11 - 5843*x^10 + 19773*x^9 - 52032*x^8 + 99384*x^7 - 126683*x^6 + 81320*x^5 + 28279*x^4 - 110890*x^3 + 92734*x^2 - 21014*x - 25437, 1)
 

Normalized defining polynomial

\( x^{16} - 5 x^{15} + 12 x^{14} + 29 x^{13} - 289 x^{12} + 1464 x^{11} - 5843 x^{10} + 19773 x^{9} - 52032 x^{8} + 99384 x^{7} - 126683 x^{6} + 81320 x^{5} + 28279 x^{4} - 110890 x^{3} + 92734 x^{2} - 21014 x - 25437 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $16$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[4, 6]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(24109722907876309716269637601=13^{10}\cdot 53^{10}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $59.41$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $13, 53$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{3} a^{12} - \frac{1}{3} a^{11} - \frac{1}{3} a^{10} - \frac{1}{3} a^{9} - \frac{1}{3} a^{8} - \frac{1}{3} a^{7} + \frac{1}{3} a^{3} - \frac{1}{3} a^{2} + \frac{1}{3} a$, $\frac{1}{9} a^{13} + \frac{1}{9} a^{12} - \frac{1}{3} a^{10} + \frac{1}{3} a^{9} - \frac{1}{3} a^{8} + \frac{4}{9} a^{7} + \frac{1}{3} a^{5} + \frac{4}{9} a^{4} - \frac{2}{9} a^{3} - \frac{4}{9} a^{2} + \frac{2}{9} a + \frac{1}{3}$, $\frac{1}{27} a^{14} - \frac{1}{27} a^{12} - \frac{1}{9} a^{11} + \frac{2}{9} a^{10} - \frac{2}{9} a^{9} - \frac{11}{27} a^{8} + \frac{5}{27} a^{7} + \frac{1}{9} a^{6} + \frac{1}{27} a^{5} - \frac{2}{9} a^{4} + \frac{7}{27} a^{3} - \frac{4}{9} a^{2} + \frac{10}{27} a + \frac{2}{9}$, $\frac{1}{77175589289241466118813433183639} a^{15} + \frac{496799362636409187251034220223}{77175589289241466118813433183639} a^{14} - \frac{243070005503882390502761578972}{77175589289241466118813433183639} a^{13} - \frac{9442239255203859682998144551579}{77175589289241466118813433183639} a^{12} + \frac{545353249486102579338049985350}{8575065476582385124312603687071} a^{11} - \frac{1524543405343728712728232982071}{25725196429747155372937811061213} a^{10} - \frac{30770479456712676974623109552483}{77175589289241466118813433183639} a^{9} + \frac{34171814792700658546075953307528}{77175589289241466118813433183639} a^{8} - \frac{348017373398592779536000067300}{1794781146261429444623568213573} a^{7} - \frac{2863651204541941961589911315801}{77175589289241466118813433183639} a^{6} - \frac{29967263197745625772167269532544}{77175589289241466118813433183639} a^{5} - \frac{26484928976275769435337444445151}{77175589289241466118813433183639} a^{4} - \frac{4604393584850445330733859295421}{77175589289241466118813433183639} a^{3} + \frac{4702296704404140717753307693747}{77175589289241466118813433183639} a^{2} + \frac{37746392464619374016047599706415}{77175589289241466118813433183639} a - \frac{8053250424351191248205585719064}{25725196429747155372937811061213}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

Trivial group, which has order $1$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $9$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 177357386.65 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

16T875:

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A solvable group of order 512
The 32 conjugacy class representatives for t16n875
Character table for t16n875 is not computed

Intermediate fields

\(\Q(\sqrt{13}) \), 4.4.8957.1, 8.4.225360027841.2

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Degree 16 siblings: data not computed
Degree 32 siblings: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type ${\href{/LocalNumberField/2.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/3.8.0.1}{8} }{,}\,{\href{/LocalNumberField/3.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/3.1.0.1}{1} }^{2}$ ${\href{/LocalNumberField/5.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/11.4.0.1}{4} }^{4}$ R ${\href{/LocalNumberField/17.2.0.1}{2} }^{8}$ ${\href{/LocalNumberField/19.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/23.8.0.1}{8} }{,}\,{\href{/LocalNumberField/23.4.0.1}{4} }{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{2}$ ${\href{/LocalNumberField/29.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/31.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/41.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/43.2.0.1}{2} }^{8}$ ${\href{/LocalNumberField/47.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{4}$ R ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$13$13.4.2.1$x^{4} + 39 x^{2} + 676$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
13.4.3.1$x^{4} - 13$$4$$1$$3$$C_4$$[\ ]_{4}$
13.4.3.1$x^{4} - 13$$4$$1$$3$$C_4$$[\ ]_{4}$
13.4.2.1$x^{4} + 39 x^{2} + 676$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
53Data not computed