Properties

Label 16.4.24109722907...601.25
Degree $16$
Signature $[4, 6]$
Discriminant $13^{10}\cdot 53^{10}$
Root discriminant $59.41$
Ramified primes $13, 53$
Class number $2$ (GRH)
Class group $[2]$ (GRH)
Galois group 16T875

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![2249, -8164, 14105, -17069, 11790, 1672, -12633, 13057, -8388, 3385, -413, 338, 137, -61, -2, -1, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^16 - x^15 - 2*x^14 - 61*x^13 + 137*x^12 + 338*x^11 - 413*x^10 + 3385*x^9 - 8388*x^8 + 13057*x^7 - 12633*x^6 + 1672*x^5 + 11790*x^4 - 17069*x^3 + 14105*x^2 - 8164*x + 2249)
 
gp: K = bnfinit(x^16 - x^15 - 2*x^14 - 61*x^13 + 137*x^12 + 338*x^11 - 413*x^10 + 3385*x^9 - 8388*x^8 + 13057*x^7 - 12633*x^6 + 1672*x^5 + 11790*x^4 - 17069*x^3 + 14105*x^2 - 8164*x + 2249, 1)
 

Normalized defining polynomial

\( x^{16} - x^{15} - 2 x^{14} - 61 x^{13} + 137 x^{12} + 338 x^{11} - 413 x^{10} + 3385 x^{9} - 8388 x^{8} + 13057 x^{7} - 12633 x^{6} + 1672 x^{5} + 11790 x^{4} - 17069 x^{3} + 14105 x^{2} - 8164 x + 2249 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $16$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[4, 6]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(24109722907876309716269637601=13^{10}\cdot 53^{10}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $59.41$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $13, 53$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $\frac{1}{13} a^{11} - \frac{2}{13} a^{10} - \frac{2}{13} a^{9} - \frac{5}{13} a^{8} + \frac{6}{13} a^{7} - \frac{4}{13} a^{6} - \frac{4}{13} a^{5} - \frac{1}{13} a^{4}$, $\frac{1}{13} a^{12} - \frac{6}{13} a^{10} + \frac{4}{13} a^{9} - \frac{4}{13} a^{8} - \frac{5}{13} a^{7} + \frac{1}{13} a^{6} + \frac{4}{13} a^{5} - \frac{2}{13} a^{4}$, $\frac{1}{13} a^{13} + \frac{5}{13} a^{10} - \frac{3}{13} a^{9} + \frac{4}{13} a^{8} - \frac{2}{13} a^{7} + \frac{6}{13} a^{6} - \frac{6}{13} a^{4}$, $\frac{1}{39} a^{14} - \frac{1}{39} a^{11} - \frac{17}{39} a^{10} + \frac{16}{39} a^{9} - \frac{11}{39} a^{8} - \frac{17}{39} a^{7} - \frac{5}{13} a^{6} + \frac{6}{13} a^{5} + \frac{2}{13} a^{4} + \frac{1}{3} a^{3} + \frac{1}{3} a^{2} + \frac{1}{3} a - \frac{1}{3}$, $\frac{1}{582030444911423454607476938967} a^{15} - \frac{1417447531842619172659006496}{582030444911423454607476938967} a^{14} - \frac{2123413560263662124947137994}{64670049434602606067497437663} a^{13} + \frac{2656102613936988505189130822}{582030444911423454607476938967} a^{12} - \frac{3390268469672849425396958513}{194010148303807818202492312989} a^{11} - \frac{73967972738888748463654683040}{582030444911423454607476938967} a^{10} + \frac{109804585887450085229764782842}{582030444911423454607476938967} a^{9} + \frac{26767385324949032527896865388}{582030444911423454607476938967} a^{8} + \frac{210403279199884259184106522195}{582030444911423454607476938967} a^{7} + \frac{43882828969629656567282680786}{194010148303807818202492312989} a^{6} - \frac{21642021031877402295585132407}{64670049434602606067497437663} a^{5} + \frac{105383080080062043570178632718}{582030444911423454607476938967} a^{4} - \frac{8466887776396882707136002265}{44771572685494111892882841459} a^{3} - \frac{9367373181060825595487286010}{44771572685494111892882841459} a^{2} + \frac{3742443806205220676951795750}{14923857561831370630960947153} a + \frac{13080146707232064136733182457}{44771572685494111892882841459}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

$C_{2}$, which has order $2$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $9$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 229779833.673 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

16T875:

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A solvable group of order 512
The 32 conjugacy class representatives for t16n875
Character table for t16n875 is not computed

Intermediate fields

\(\Q(\sqrt{13}) \), 4.4.8957.1, 8.4.225360027841.2

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Degree 16 siblings: data not computed
Degree 32 siblings: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type ${\href{/LocalNumberField/2.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/3.8.0.1}{8} }{,}\,{\href{/LocalNumberField/3.4.0.1}{4} }{,}\,{\href{/LocalNumberField/3.1.0.1}{1} }^{4}$ ${\href{/LocalNumberField/5.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/11.4.0.1}{4} }^{4}$ R ${\href{/LocalNumberField/17.2.0.1}{2} }^{8}$ ${\href{/LocalNumberField/19.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/23.8.0.1}{8} }{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{2}$ ${\href{/LocalNumberField/29.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/31.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/41.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/43.2.0.1}{2} }^{8}$ ${\href{/LocalNumberField/47.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{4}$ R ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$13$13.2.1.1$x^{2} - 13$$2$$1$$1$$C_2$$[\ ]_{2}$
13.2.1.1$x^{2} - 13$$2$$1$$1$$C_2$$[\ ]_{2}$
13.2.1.1$x^{2} - 13$$2$$1$$1$$C_2$$[\ ]_{2}$
13.2.1.1$x^{2} - 13$$2$$1$$1$$C_2$$[\ ]_{2}$
13.4.3.2$x^{4} - 52$$4$$1$$3$$C_4$$[\ ]_{4}$
13.4.3.2$x^{4} - 52$$4$$1$$3$$C_4$$[\ ]_{4}$
53Data not computed