Normalized defining polynomial
\( x^{16} - x^{15} - 2 x^{14} + 23 x^{13} - 309 x^{12} + 2063 x^{11} - 6918 x^{10} + 12394 x^{9} - 20469 x^{8} + 41789 x^{7} - 46181 x^{6} + 6504 x^{5} + 13705 x^{4} - 9702 x^{3} + 15417 x^{2} - 2376 x + 2187 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[4, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(24109722907876309716269637601=13^{10}\cdot 53^{10}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $59.41$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $13, 53$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $\frac{1}{13} a^{9} + \frac{5}{13} a^{8} + \frac{1}{13} a^{7} - \frac{5}{13} a^{6} + \frac{2}{13} a^{5} - \frac{5}{13} a^{4} + \frac{2}{13} a^{3} + \frac{1}{13} a^{2} + \frac{2}{13} a - \frac{4}{13}$, $\frac{1}{13} a^{10} + \frac{2}{13} a^{8} + \frac{3}{13} a^{7} + \frac{1}{13} a^{6} - \frac{2}{13} a^{5} + \frac{1}{13} a^{4} + \frac{4}{13} a^{3} - \frac{3}{13} a^{2} - \frac{1}{13} a - \frac{6}{13}$, $\frac{1}{13} a^{11} + \frac{6}{13} a^{8} - \frac{1}{13} a^{7} - \frac{5}{13} a^{6} - \frac{3}{13} a^{5} + \frac{1}{13} a^{4} + \frac{6}{13} a^{3} - \frac{3}{13} a^{2} + \frac{3}{13} a - \frac{5}{13}$, $\frac{1}{13} a^{12} - \frac{5}{13} a^{8} + \frac{2}{13} a^{7} + \frac{1}{13} a^{6} + \frac{2}{13} a^{5} - \frac{3}{13} a^{4} - \frac{2}{13} a^{3} - \frac{3}{13} a^{2} - \frac{4}{13} a - \frac{2}{13}$, $\frac{1}{195} a^{13} + \frac{2}{195} a^{12} + \frac{1}{195} a^{11} - \frac{4}{195} a^{10} + \frac{1}{65} a^{9} + \frac{19}{39} a^{8} + \frac{1}{5} a^{7} - \frac{71}{195} a^{6} - \frac{23}{65} a^{5} + \frac{14}{195} a^{4} - \frac{53}{195} a^{3} - \frac{2}{65} a^{2} - \frac{1}{3} a + \frac{16}{65}$, $\frac{1}{26325} a^{14} - \frac{49}{26325} a^{13} - \frac{251}{26325} a^{12} - \frac{41}{5265} a^{11} + \frac{23}{2925} a^{10} + \frac{857}{26325} a^{9} + \frac{263}{8775} a^{8} - \frac{142}{5265} a^{7} + \frac{1549}{8775} a^{6} - \frac{11257}{26325} a^{5} + \frac{10558}{26325} a^{4} + \frac{1309}{8775} a^{3} + \frac{7126}{26325} a^{2} - \frac{193}{675} a - \frac{48}{325}$, $\frac{1}{102881203211196039353914125} a^{15} - \frac{177108772158679158788}{20576240642239207870782825} a^{14} + \frac{154692742685060010259183}{102881203211196039353914125} a^{13} - \frac{2657708576095827031006789}{102881203211196039353914125} a^{12} + \frac{1013060940562057134295804}{34293734403732013117971375} a^{11} + \frac{388429797915928351846264}{20576240642239207870782825} a^{10} + \frac{39650870088290869304917}{1270138311249333819184125} a^{9} + \frac{6382223647906238857474966}{102881203211196039353914125} a^{8} - \frac{1062957777860053621797109}{3810414933748001457552375} a^{7} + \frac{47690162125354255925436266}{102881203211196039353914125} a^{6} - \frac{1531069291459472650381981}{20576240642239207870782825} a^{5} + \frac{792589479019163282570611}{11431244801244004372657125} a^{4} - \frac{40840051084789290637367531}{102881203211196039353914125} a^{3} + \frac{10293365458094068303939444}{34293734403732013117971375} a^{2} + \frac{291461100833281872177466}{11431244801244004372657125} a - \frac{52282264979696591570698}{141126479027703757687125}$
Class group and class number
$C_{2}$, which has order $2$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 147323170.261 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 512 |
| The 32 conjugacy class representatives for t16n875 |
| Character table for t16n875 is not computed |
Intermediate fields
| \(\Q(\sqrt{13}) \), 4.4.8957.1, 8.4.225360027841.2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/3.8.0.1}{8} }{,}\,{\href{/LocalNumberField/3.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/3.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/5.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/17.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/19.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }{,}\,{\href{/LocalNumberField/23.4.0.1}{4} }{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/31.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/41.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{4}$ | R | ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $13$ | 13.2.1.1 | $x^{2} - 13$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 13.2.1.1 | $x^{2} - 13$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 13.2.1.1 | $x^{2} - 13$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 13.2.1.1 | $x^{2} - 13$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 13.4.3.2 | $x^{4} - 52$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 13.4.3.2 | $x^{4} - 52$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 53 | Data not computed | ||||||